• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Nordisk institutt for studier av innovasjon, forskning og utdanning
  • Publikasjoner fra Cristin
  • Vis innførsel
  •   Hjem
  • Nordisk institutt for studier av innovasjon, forskning og utdanning
  • Publikasjoner fra Cristin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A conceptual framework for studying science research careers

Canibano, Carolina; Woolley, Richard; Iversen, Eric James; Hinze, Sybille; Hornbostel, Stefan; Tesch, Jakob
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Article (1.388Mb)
Permanent lenke
http://hdl.handle.net/11250/2567040
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • 4 - Academic Publications / Vitenskapelige publikasjoner [364]
  • Publikasjoner fra Cristin [396]
Originalversjon
Journal of Technology Transfer. 2018, 1-29.   10.1007/s10961-018-9659-3
Sammendrag
The emergence of open science and new data practices is changing the way research is done. Opportunities to access data through purpose built platforms and repositories, combined with emerging data and meta-data curation practices are expanding data availability in many fields. This paper presents a conceptual framework for studying scientific research careers, motivated by opportunities to link empirical datasets to construct new analyses that address remaining and emerging knowledge gaps. The research career conceptual framework (RCCF) emerges from a review of relevant theories and empirical findings regarding research careers. The paper reviews existing models and develops a typology of research careers. It also compiles a list of variables drawn from the literature on research careers. Two preliminary demonstrations of linking datasets to address empirical questions are outlined. The final discussion advocates an approach to emerging data opportunities that combines theories and models with empirical research questions as being superior to an approach that produces ad hoc explanations on the basis of ‘data fishing’ exercises.
Tidsskrift
Journal of Technology Transfer

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit