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Abstract 

Does computer programming teach students how to think? Learning to program computers 

has gained considerable popularity, and educational systems around the world are 

encouraging students in schools and even children in kindergartens to engage in programming 

activities. This popularity is based on the claim that learning computer programming 

improves cognitive skills, including creativity, reasoning, and mathematical skills. In this 

meta-analysis, we tested this claim performing a three-level, random-effects meta-analysis on 

a sample of 105 studies and 539 effect sizes. We found evidence for a moderate, overall 

transfer effect (g = 0.49, 95 % CI = [0.37, 0.61]), and identified a strong effect for near 

transfer (g = 0.75, 95 % CI = [0.39, 1.11]) and a moderate effect for far transfer (g = 0.47, 

95 % CI = [0.35, 0.59]). Positive transfer to situations that required creative thinking, 

mathematical skills, and metacognition, followed by spatial skills and reasoning existed. 

School achievement and literacy, however, benefited the least from learning to program. 

Moderator analyses revealed significantly larger transfer effects for studies with untreated 

control groups than those with treated (active) control groups. Moreover, published studies 

exhibited larger effects than grey literature. These findings shed light on the cognitive benefits 

associated with learning computer programming and contribute to the current debate 

surrounding the conceptualization of computer programming as a form of problem solving. 

Keywords: Cognitive skills; computational thinking; computer programming; three-

level meta-analysis; transfer of skills 

Educational Impact and Implications Statement: In this meta-analysis, we tested the 

claim that learning how to program a computer improves cognitive skills even beyond 

programming. The results suggested that students who learned computer programming 

outperformed those who did not in programming skills and other cognitive skills, such as 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 3 

creative thinking, mathematical skills, metacognition, and reasoning. Learning computer 

programming has certain cognitive benefits for other domains.  
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The Cognitive Benefits of Learning Computer Programming:  

A Meta-Analysis of Transfer Effects 

Computer programming is an activity similar to solving problems in other domains: It 

requires skills, such as decomposing, abstracting, iterating, and generalizing, that are also 

required in mathematics and science—in fact, these skills are critical to human cognition 

(Román-González, Pérez-González, & Jiménez-Fernández, 2017; Shute, Sun, & Asbell-

Clarke, 2017). Acknowledging these commonalities between the skills required in 

programming and the skills required to solve problems in other domains, researchers and 

computer scientists have claimed that learning to program computers has certain cognitive 

benefits (Grover & Pea, 2013; Liao & Bright, 1991; Pea & Kurland, 1984). According to this 

hypothesis, intervention studies that are aimed at fostering programming skills should not 

only reveal direct training effects but also transfer effects to situations that require other 

cognitive skills. Yet, the current research abounds in conflicting findings, as there is evidence 

both for and against the transferability of learning computer programming (Scherer, 2016), 

and some researchers claimed that far transfer does not exist (Denning, 2017). This 

observation is by no means unique to programming: Sala and Gobet (2017a) reviewed several 

meta-analyses in the domains of chess instruction, music education, and working memory 

training and concluded that so-called ‘far transfer’ (i.e., the transfer of knowledge or skills 

between two dissimilar contexts) may not exist. However, does this hold for learning to 

program computers as well? With the current meta-analysis, we investigated this question by 

testing the hypothesis that programming interventions have certain cognitive benefits. In 

particular, we examined (a) the overall transfer effect of learning computer programming, (b) 

the near transfer effects to situations that require programming skills and the far transfer 

effects to situations that require skills outside of programming, and (c) the differential far 

effects computer programming interventions may have in situations that require different 
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types of cognitive skills. In this meta-analysis, programming skills were defined as the skills 

to create, modify, and evaluate code and the knowledge about programming concepts and 

procedures (e.g., objects, algorithms). These two dimensions are referred to as 

‘Computational concepts’ and ‘Computational practices’ in the existing frameworks of 

computational thinking (Lye & Koh, 2014). 

The Transfer of Skills 

The question whether acquired knowledge and skills can be transferred from one 

context or problem to another is key to cognitive and educational psychology. In fact, the 

transfer of learning lies in the very heart of education, as it taps the flexible application of 

what has been learned (Barnett & Ceci, 2002). Perkins and Salomon (1992) understood 

transfer as a situation in which learning in one context impacts learning and performance in 

other, perhaps new contexts. Although researchers agreed on this definition (Bransford & 

Schwartz, 1999), some questions remain: Which conditions foster successful transfer? What 

characterizes “other” or “new” contexts? 

In their seminal article, Woodworth and Thorndike (1901) considered improvements 

in basic cognitive skills and the transfer to situations that require other cognitive skills. Their 

main proposal for explaining successful transfer is referred to as the ‘Theory of Common 

Elements’—a theory hypothesizing that the degree of successful transfer depends on the 

elements two different contexts or problem situations share. The authors argued that the 

transfer of skills between situations that have less in common (i.e., require only few shared 

skills or knowledge elements) occurs less often than transfer between closely related 

situations (see also Bray, 1928). Barnett and Ceci (2002) pointed out that the Theory of 

Common Elements has led to the distinction between near and far transfer. In this context, 

near transfer refers to successful transfer between similar contexts, that is, contexts that are 

closely related and require the performance of similar skills and strategies; far transfer refers 
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to successful transfer between dissimilar contexts, that is, contexts that are inherently different 

and may require different skills or strategies (Perkins & Salomon, 1992). In essence, the 

transfer of skills depends on the similarity and overlap between the contexts and problems in 

which the skills were acquired and those presented later on (Schunk, 2012). The issue with 

these definitions lies in the concepts of similarity and difference, both of which are features of 

the specific problem situations (Bransford et al., 2005). Greeno et al. (1998) emphasized that 

the transfer of skills to other contexts is highly situation-specific, that is, it largely depends on 

the situations in which the skills have been acquired previously—in other words, transfer is 

situated in experience and is influenced by the participation in previous activities (see also 

Lobato, 2006). Bransford and Schwartz (1999) pointed out that prior knowledge forms an 

additional prerequisite for successful transfer, in particular the knowledge about structure of a 

problem situation, the variables involved, and solution strategies (e.g., Bassok, 1990; Chen & 

Klahr, 2008; Cooper & Sweller, 1987). It therefore seems that the acquisition of schemata to 

solve problems may foster the transfer of learning between problem situations. 

Although the existence of far transfer was often denied (Barnett & Ceci, 2002; 

Denning, 2017), several studies provided evidence for far transfer, yet to varying degrees 

(Bransford & Schwartz, 1999). In a recent review paper, Sala and Gobet (2017a) questioned 

the existence of far transfer and referred to a series of meta-analyses in the domains of chess 

instruction and music education. Indeed, the meta-analyses the authors referred to provided 

only limited evidence for far transfer effects—successful transfer could only be found in 

situations that required skills similar to those trained in the interventions. Melby-Lervåg, 

Redick, and Hulme (2016) supported this finding by their meta-analysis of working memory 

training, and so did Sala, Tatlidil, and Gobet (2018) in their meta-analysis of video gaming. 

These findings suggest that far transfer may be differentially effective for improving cognitive 

skills. Overall, our brief review of the existing literature of transfer revealed that (a) transfer is 
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more likely to occur between closely related contexts or problem situations; (b) the success of 

transfer depends on schematic knowledge; (c) far transfer may differ across contexts. 

The Transfer of Programming Skills 

Programming skills are considered critical to the development of “computational 

thinking”—a concept that “involves solving problems, designing systems, and understanding 

human behavior, by drawing on the concepts fundamental to computer science” (Wing, 2006, 

p. 33). In their seminal review, Shute et al. (2017) named five cognitive processes involved in 

computational thinking: Problem reformulation, recursion, problem decomposition, 

abstraction, and systematic testing. These skills defined the concept as a form of problem 

solving (Lye & Koh, 2014). Despite the close relationship between programming skills and 

computational thinking, the two concepts are not identical—the latter also entails taking 

computational perspectives (i.e., students’ understanding of themselves and their interaction 

with others and with technology; Shute et al., 2017) as an element of computational 

participation (Kafai & Burke, 2014). Nevertheless, the processes involved in programming 

require problem-solving skills, such as decomposing problems, applying algorithms, 

abstracting, and automatizing, and ultimately aid the acquisition of computational thinking 

skills (Yadav, Good, Voogt, & Fisser, 2017). Programming may therefore be considered a 

way of teaching and learning computational thinking (Flórez et al., 2017), a way of assessing 

computational thinking (Grover & Pea, 2013), and a way of exposing students to 

computational thinking by creating computational artefacts, such as source code or computer 

programs (Lye & Koh, 2014). Barr and Stephenson (2011), as they compared core 

computational thinking with the demands of solving problems in STEM domains, concluded 

that programming skills, computational thinking, and problem solving are intertwined. 

In this meta-analysis, we define programming skills as the skills to create, modify, and 

evaluate code and the conceptual and procedural knowledge needed to apply these skills, for 
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instance, in order to solve problems—a definition close to that of computational thinking. 

This definition includes two key dimensions of computational thinking: computational 

concepts (i.e., syntactic, semantic, and schematic knowledge) and computational practices 

(strategic knowledge and problem solving; e.g., Lye & Koh, 2014). Hence, the research on the 

transfer of programming skills we review here also targets aspects of the transfer of 

computational thinking skills.  

As learning computer programming engages students in problem solving activities, 

transfer effects on students’ performance in situations that require problem solving seem 

likely (Shute et al., 2017). Although Pea and Kurland (1984) doubted the existence of such 

effects, they still argue that some effects on thinking skills that are close to programming may 

exist. Part of this argument is the observation that problem solving and programming skills 

share certain subskills. In a conceptual review of problem solving, creative thinking, and 

programming skills, Scherer (2016) listed several subskills that are required to successfully 

solve tasks in these three domains. The author concludes that these commonalities provide 

sufficient ground to expect a positive transfer between them. Clements (1995) established that 

creativity plays a role in programming, and Grover and Pea (2013) supported this perspective. 

Reviewing further domains and contexts, Clements (1986a) claimed that programming skills 

can even be assigned to the cognitive dimensions of intelligence frameworks—hence, a 

transfer of programming skills to intelligence tasks seems likely. The author further suggested 

considering metacognitive skills as integral parts of programming. Finally, Shute et al. (2017) 

identified problem solving and modeling as two commonalities between programming and 

mathematical skills, arguing for the existence of transfer effects. The list of cognitive skills 

that overlap with programming could be extended even further (for a detailed overview, 

please refer to Scherer, 2016). However, the selection presented here already points into one 
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direction: programming skills and other cognitive skills share important subskills, and transfer 

effects of learning computer programming may therefore exist. 

A recently published, cross-sectional study of computational thinking provided some 

evidence supporting this reasoning: Román-González et al. (2017) developed a performance 

test of computational thinking and administered it to 1,251 Spanish students in grade levels 5 

to 10. The results showed that computational thinking was significantly and positively related 

to other cognitive skills, including spatial skills (r = .44), reasoning skills (r = .44), and 

problem-solving skills (r = .67). Drawing from the Cattell-Horn-Carroll [CHC] theory 

(McGrew, 2009), Román-González et al. (2017) concluded that computational thinking, 

operationally defined and measured as what we consider programming skills in this meta-

analysis, represents a form of problem solving. Although these findings suggest that 

programming skills overlap with other cognitive skills, they do not provide evidence for the 

transferability of programming skills, due to the lack of experimental manipulation.   

Previous Meta-Analyses on the Transfer of Programming Skills 

Two meta-analyses addressed the transferability of programming skills, both of which 

resulted in positive and significant effect sizes. The first meta-analysis synthesized 432 effect 

sizes from 65 studies that presented students with programming activities and administered 

assessments of cognitive skills (Liao & Bright, 1991). Using a random-effects model, Liao 

and Bright obtained an overall effect size of d = 0.41 (p < .01) and thus supported the claim 

that programming skills can be transferred. Liao and Bright further found that this overall 

transfer effect size was moderated by the type of publication (with largest effects for 

published articles in the database ERIC), grade level (with largest effects for college and K-3 

students), the programming language used during the intervention (with largest effects for 

Logo and BASIC), and the duration of the intervention (with largest effects for short-term 
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interventions). Neither the design of the primary studies nor the year of publication explained 

variation in the overall effect size. 

Although this study provided evidence for the transferability of computer 

programming based on a large sample of effect sizes, we believe that it has got two 

shortcomings: First, the authors reported an overall effect size for transfer without 

differentiating between cognitive skills. Existing meta-analyses that examined transfer effects 

in other domains, however, found that transfer effects vary considerably across cognitive 

skills (Melby-Lervåg et al., 2016; Sala & Gobet, 2016). In other words, transfer intervention 

studies may be particularly effective in situations that require cognitive skills close to the 

trained skills (Sala & Gobet, 2017a). Second, Liao and Bright (1991) included a dataset that 

comprised 432 effect sizes from 65 studies—a dataset that clearly had a nested structure (i.e., 

effect sizes were nested in studies). Considering the recent methodological advancements of 

meta-analyses (M. W.-L. Cheung, 2014), a three-level random-effects modelling approach 

would have been more appropriate than the random-effects model Liao and Bright specified, 

as it quantifies both within- and between-study variation. 

In the second meta-analysis, Liao (2000) updated the former meta-analysis and 

included 22 interventions and 86 effect sizes that were published between 1989 and 1999. 

Aggregating these effects resulted in a large overall transfer effect of d = 0.76 (p < .05). In 

contrast to the original meta-analysis, pre-experimental study designs were included (e.g., 

one-group pretest-posttest designs). Considering that these designs provided the smallest 

transfer effects (d = 0.45) among all other designs (d = 0.56–2.12), their inclusion may have 

biased the overall effect. Moreover, the reported effects must be interpreted with caution, 

given the small sample size of studies and effect sizes. In contrast to Liao and Bright (1991), 

Liao (2000) tested whether transfer effects differed across cognitive skills. Indeed, the 

strongest effects occurred for the near transfer of skills (d = 2.48), whereas the smallest effects 
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occurred for the far transfer to creative thinking situations (d = -0.13). Other skills such as 

critical thinking, problem solving, metacognition, and spatial skills benefited from learning 

computer programming moderately (d = 0.37–0.58). 

Uttal et al. (2013) included seven studies that administered programming interventions 

to enhance students’ spatial skills. Although the authors did not report an overall effect size 

for this selection of studies, six out of the seven primary effect sizes of these interventions 

were positive and significant (g = 0.12–0.92, p < .05). This finding uncovered that positive 

transfer of learning computer programming on situations that require the application of spatial 

skills may exist. 

In their review of video gaming, Sala et al. (2018) claimed that “teaching the computer 

language Logo to improve pupils’ thinking skills has produced unsatisfactory results” (p. 113) 

and referred to two intervention studies. Although this claim was in line with the authors’ 

main argument, we believe that it stands on shaky legs, given the plethora of Logo 

intervention studies that showed positive far transfer effects (e.g., Clements & Sarama, 1997; 

Lye & Koh, 2014; Scherer, 2016; Shute et al., 2017). Nevertheless, we agree with their 

position that the existing research on far transfer in this area abounds in mixed results—some 

studies found significant effects, while others failed to provide evidence for far transfer 

(Palumbo, 1990; Salomon & Perkins, 1987). This controversy motivated the present meta-

analysis. Overall, the previous meta-analyses of the transferability of computer programming 

suggested possible, positive transfer effects. However, we identified several methodological 

and substantive issues which primarily referred to the specification of meta-analytic models, 

the differentiation of cognitive skills, and the treatments of control groups. 

The Present Meta-Analysis 

In this meta-analysis, we synthesize the evidence on the transferability of learning 

computer programming to situations that require certain cognitive skills. Along with 
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providing an overall transfer effect, we examine the variation and consistency of effects 

across studies, types of transfer, and cognitive skills. We believe that the rapid advancements 

in technology and the development of visual programming languages (e.g., Scratch) next to 

text-based languages (e.g., Java) necessitate an update of the existing research. Besides, 

acquiring computational thinking skills through programming has received considerable 

attention lately: Programming is introduced into school curricula in several educational 

systems—this development is largely based on the claim that learning computer programming 

has certain cognitive benefits in other domains and contexts (Grover & Pea, 2013; Lye & 

Koh, 2014). We provide some answers to the question whether learning to program helps to 

improve cognitive skills and extend the existing research literature on the transfer of skills, 

which recently focused on chess and music instruction, working memory training, and video 

gaming, by testing the claims of transfer effects for the domain of computer programming. 

More specifically, we focus on the following research questions: 

1. Overall transfer effects: (a) Does computer programming training improve 

performance on cognitive skills tasks, independent of the type of transfer or 

cognitive skill? (b) To what extent are these effects moderated by study, sample, 

and measurement characteristics? 

2. Near transfer effects: (a) Does computer programming training improve 

performance on assessments of computer programming skills? (b) To what extent 

are these effects moderated by study, sample, and measurement characteristics? 

3. Overall far transfer effects: (a) Does computer programming training improve 

performance on tasks assessing cognitive skills other than computer programming? 

(b) To what extent are these effects moderated by study, sample, and measurement 

characteristics? 
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4. Far transfer effects by cognitive skills: (a) Does computer programming training 

improve performance on tasks assessing reasoning, creative thinking, 

metacognition, spatial skills, mathematical skills, literacy, and school achievement 

in domains other than mathematical skills and literacy? (b) To what extent do these 

far transfer effects differ across the types of cognitive skills and subskills? 

First, we examine the overall transfer effects of computer programming training (Research 

Question 1a). These effects include benefits for programming skills and skills outside of the 

programming domain. The main purposes of providing answers to this research question are 

(a) to set a reference for the overall cognitive benefits, and (b) to compare the findings 

obtained from our meta-analysis with those reported by Liao and Bright (1991), who treated 

“cognitive skills”, although measured by several skills, as a univariate outcome. Although the 

overall transfer effect already provides insights into the cognitive benefits of learning 

computer programming, we believe that a further differentiation into the skills is needed that 

are required in the new situations and contexts. Indeed, the findings of existing meta-analyses 

examining transfer effects of cognitive skills trainings warranted further differentiation either 

by the type of transfer or by the cognitive skills (e.g., Bediou et al., 2018; Melby-Lervåg et 

al., 2016; Sala & Gobet, 2017a). 

We add possible moderators to explain variation in the reported effect sizes (Research 

Question 1b). The key premise for addressing this question is that effect sizes may vary 

within and between studies—moderating variables can therefore explain variation at the study 

level or the level of effect sizes. Possible moderators represent the study, sample, and 

measurement characteristics, such as the statistical study design, types of control groups, 

educational level of study participants, programming tools, types of performance tests, and the 

subskills assessed by performance tests. 
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Second, we quantify the immediate, near transfer effects of learning computer 

programming to situations and tasks that require programming skills and explain possible 

variation within or between studies by the above-mentioned moderators (Research Questions 

2a & 2b). Third, we examine the overall far transfer effects and possible moderators thereof 

(Research Questions 3a & 3b). This study of the overall far transfer is based on measures of 

skills other than programming and does not differentiate between the different types of 

cognitive skills. Finally, we differentiate between different types of cognitive skills to provide 

more information on the far transfer effects (Research Questions 4a & 4b). These skills 

represent a range of domain-general and domain-specific skills—skills that show a relative 

distance to computer programming. To further substantiate the skill- and situation-specificity 

of far transfer effects, we compare the resultant effect sizes across cognitive skills. This 

comparison also unravels whether certain cognitive skills benefit from computer 

programming training more than others.  

Method 

Literature Search and Initial Screening 

To identify the primary literature relevant to this meta-analysis, we performed 

searches in literature databases, academic journals, reference lists of existing reviews and 

meta-analyses, publication lists of scholars, and the informal academic platform 

ResearchGate. The database search included ACM Digital Library, IEEE Xplore Digital 

Library, ERIC, PsycINFO, Learn Tech Library, ProQuest Dissertations and Theses Database, 

and Google Scholar (the first 100 publications as of January 31, 2017), and focused on 

publications that had been published between January 1, 1965 and January 31, 2017. The 

databases ACM Digital Library, IEEE Xplore Digital Library, Learn Tech Library, 

ResearchGate, and Google Scholar contained both publications in peer-reviewed academic 

journals and grey literature. We referred to Adams et al.’s (2017) definition of “grey 
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literature”, which included dissertations, conference proceedings, working papers, book 

chapters, technical reports, and other references that have not been published in scholarly 

journals after peer-review (see also Schmucker et al., 2017). 

Whenever Boolean search operators were possible (e.g., ERIC, PsycINFO), the 

following search terms were used: (Programming OR coding OR code OR Scratch* OR 

Logo* OR Mindstorm* OR computing OR computational thinking) AND (teach* OR learn* 

OR educat* OR student* OR intervention OR training) AND Computer* AND (compar* OR 

control group* or experimental group* OR treatment). These terms were comprised of three 

core elements: the concepts of programming and relevant programming tools (e.g., Scratch 

and Logo), the context of teaching, training, and interventions, and the design of relevant 

studies (i.e., studies with treatment and control groups). Whenever needed, we adapted them 

to the search criteria set by the databases (for details, please refer to the Supplementary 

Material A2). All searches were limited to titles, abstracts, and keywords.  

Besides the search in databases, we also hand-searched for publications in relevant 

academic journals, and reference and citation lists (whenever possible, via the ISI Web of 

Knowledge) of existing reviews and meta-analyses on the following topics: teaching and 

learning computer programming, the concept of computational thinking, and the effects of 

training spatial skills and creativity (see Supplementary Material A2). From the existing meta-

analyses, however, (Liao, 2000; Liao & Bright, 1991), we could only retrieve the studies and 

effect sizes reported there to a limited extent, because (a) several publications were no longer 

available in a readable format given their publication year (before 2000)—we contacted 

twenty authors directly via email or via the messaging tool implemented in ResearchGate; 

five authors responded to our queries and sent us their publications; (b) inclusion and 

exclusion criteria of the transfer studies differed between the two meta-analyses; (c) pre-

experimental designs were included in these meta-analyses. Finally, we reviewed the formal 
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and informal publication lists of scholars in the field (Bright, Clements, Kazakoff, Liao, 

Pardamean, Pea, Grover, and Resnick) via Google Scholar and ResearchGate. In August 

2017, we received a notification about two additional, empirical studies that had been 

published that month (Erol & Kurt, 2017; Psycharis & Kallia, 2017)—these studies entered 

our list of possibly relevant publications. Despite our efforts to retrieve unpublished studies 

(e.g., in the form of conference presentations or informal communications) from authors and 

associations in the field, we did not receive any unpublished material.  

Overall, our literature search resulted in 5,193 publications (see Figure 1). After 

removing duplicates and screening titles for content fit (i.e., the studies must concern 

computer programming), 708 publications were submitted to an initial screening of abstracts. 

We read each abstract and examined whether the publication presented a training of computer 

programming skills and was of quantitative nature; conceptual papers that presented computer 

programming tools and theoretical reviews without any quantitative evaluation were 

discarded. This initial screening addressed the criteria of relevance, quantitative data 

sufficiency, and the presence of an intervention, and resulted in 440 eligible abstracts. The 

results of both the literature search and the initial screening are shown in Figure 1. 

Screening and Eligibility Criteria 

The extracted publications were further screened based on inclusion and exclusion 

criteria (Figure 1). As the current meta-analysis focuses on the transfer effects of learning to 

program as results of an intervention—including near transfer effects (i.e., effects on 

performance in programming or computational thinking) and far transfer effects (i.e., effects 

on performance in related cognitive constructs, such as reasoning skills, creative thinking, 

spatial skills, or school achievement)—studies with an experimental or quasi-experimental 

design that reported pretest and posttest performance or posttest performance only were 

included. In line with existing meta-analyses on transfer effects in other domains (e.g., Melby-
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Lervåg, Redick, & Hulme, 2016; Sala & Gobet, 2016), we excluded studies with pre-

experimental designs (e.g., single-group pretest-posttest designs without any control group). 

Overall, studies were included in our meta-analysis if they met the following criteria: 

1. Accessibility: Full texts or secondary resources that describe the study in sufficient 

detail must have been available. 

2. Study design: The study included a training of computer programming skills with an 

experimental or a quasi-experimental design and at least one control group (treated or 

untreated); correlational, ex-post facto studies, or pre-experimental designs (e.g., one-

group pretest-posttest designs) were excluded. 

3. Transfer effects: The effect of learning computer programming could be isolated; 

studies reporting the effects of two or more alternative programming trainings without 

any non-programming condition were excluded. 

4. Reporting of effect sizes: The study reported data that were sufficient to calculate the 

effect sizes of learning computer programming. 

5. Grade levels: Control and treatment group(s) had to include students of the same 

grade level or age group to achieve sample comparability. 

6. Performance orientation: The study had to report on at least one cognitive, 

performance-based outcome measure, such as measures of computer programming, 

reasoning, creative thinking, critical thinking, spatial skills, school achievement, or 

similar; studies reporting only behavioral (e.g., number and sequence of actions, 

response times) or self-report measures (i.e., measures of competence beliefs, 

motivation of volition) were excluded. 

7. Educational context: The study samples comprised children or students enrolled in 

pre-K to 12, and tertiary education; studies conducted outside of educational settings 
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were excluded to avoid further sample heterogeneity (a similar reasoning can be found 

in Naragon-Gainey, McMahon, & Chacko, 2017). 

8. Non-clinical sample: Studies involving non-clinical samples were included; studies 

involving samples of students with specific learning disabilities or clinical conditions 

were excluded. 

9. Language of reporting: Study results had to be reported in English; studies reporting 

results in other languages without any translation into English were excluded. 

In total, 20 % of the studies entering the fine screening (i.e., the application of 

inclusion and exclusion criteria) were double-screened by the first and the second author. The 

overall agreement was high, weighted κ = .97. Disagreement was resolved in a discussion 

about whether and why specific inclusion and exclusion criteria might or might not apply 

until consent was achieved. The performance of the inclusion and exclusion criteria resulted 

in m = 105 studies providing k = 539 effect sizes, as shown in Figure 1 (for more details, 

please refer to the Supplementary Material A2). 

Effect Size Measures 

To examine the transfer effects on learning to program on cognitive skills, we 

extracted the relevant statistics from the eligible studies and transformed them into effect 

sizes. The resultant effect sizes indicated the degree to which gains in cognitive abilities 

existed in the treatment group that received a programming intervention, relative to a control 

group that did not. Hedges’ g was reported as an effect size, because it accounted for possible 

bias due to differences in sample sizes (Borenstein, Hedges, Higgins, & Rothstein, 2009; Uttal 

et al., 2013). We calculated Hedges’ g from pretest-posttest experimental or quasi-

experimental and posttest-only designs using the available statistics (e.g., mean scores, 

standard deviations, Cohen’s d, F-values, and t-values). If studies included multiple control 

groups, we included the transfer effects obtained from all possible treatment-control group 
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comparisons. Supplementary Material A2 details these calculations, and Supplementary 

Material A1 documents the resultant effect sizes. Given that only 43.2 % of the reliability 

coefficients of the cognitive skills measures were available and considering the current 

disagreement about the impact of unreliability corrections on effect size estimations (M. W.-

L. Cheung, 2015), we did not correct the reported effect sizes for the unreliability of the 

outcome measures. 

Coding of Studies 

To understand the role of contextual variables for the transfer effects, we extracted 

information about the study design, the content, purpose, and language of programming, the 

types of outcome variables, the educational level of participants, the length of the 

intervention, the publication year and status. These variables were identified as possible 

moderators explaining variation in effect sizes in previous meta-analyses (Liao, 2000; Liao & 

Bright, 1991), and defined the contexts in which programming interventions may or may not 

succeed (Grover & Pea, 2013; Shute et al., 2017). Considering that transfer effects may vary 

within and between studies, possible moderators may operate at the study-level, the level of 

effect sizes (or measures), or both levels. Whereas most of the variables listed below served as 

study-level characteristics (e.g., average age of students, randomization and matching of 

experimental groups), some of them varied within studies and were thus considered effect-

size-level predictors (e.g., statistical study design, treatment of control groups, cognitive 

skills). To ensure that the coding scheme was reliable, 25 % of the eligible studies were coded 

independently by first and the third author. The overall agreement was 94 %; conflicts were 

resolved during a discussion session until consensus was reached. Supplementary Material A1 

documents the coded variables. Categorical moderator variables with more than one category 

were dummy-coded. 
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Sample characteristics. To describe the samples involved in the studies, we extracted 

information about participants’ average age (in years), the educational level the intervention 

was targeted at (i.e., pre-kindergarten, kindergarten, primary school [1-6], secondary school 

[7-13], or university/college), and the proportion of female participants in the sample. 

Randomization and matching. To supplement the list of study characteristics, we 

coded whether individuals or pairs were randomly assigned to the treatment and control 

conditions. Studies assigning entire classrooms (as a cluster) to the conditions were coded as 

‘non-random’. If authors failed to communicate the degree of randomization, their study was 

coded as ‘non-random’, even though authors labelled their design as ‘experimental’. In 

addition, we coded the matching of the experimental groups with respect to relevant variables 

(e.g., basic cognitive abilities, computer experience, or sample characteristics including 

gender, age, and grade level) using the categories ‘matched’ or ‘not matched’. 

Type of control group. We coded the type of treatment of the control groups as 

‘treated’ or ‘untreated’. Control groups were coded as ‘treated’ (or active) if they received an 

alternative training that did not involve programming activities yet was aimed at training a 

certain cognitive skill. For example, Kim, Chung, and Yu (2013) examined the effects of 

learning programming with the language Scratch on creative thinking. Whereas the treatment 

group engaged in the programming instruction, the control group followed regular instruction 

that was not targeted at improving creativity. For this study, we coded the control group as 

untreated. Hayes and Stewart (2016) examined the effects of learning Scratch programming 

on reasoning. Given that the control group engaged in an alternative training of reasoning 

skills, we coded it as treated.  

Studies may contain multiple outcome variables and control groups that were treated 

to support only one of these outcomes (i.e., they were treated considering one outcome 

variable, yet untreated considering another outcome variable). The treatment of control groups 
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is thus a variable measured at the level of effect sizes. At the same time, we tested whether 

this variable may also explain variation between studies and coded the treatment of control 

group(s) at the study level as “treated”, “untreated”, or “mixed” as well. Hence, the type of 

control group(s) served as both an effect size-level and study-level variable. 

Student collaboration. A recently published meta-analysis indicated that learning 

computer programming can be more effective in groups than learning it individually 

(Umapathy & Ritzhaupt, 2017). Moreover, the transfer of problem-solving strategies may be 

more effective when students work in pairs (e.g., Uribe, Klein, & Sullivan, 2003). We 

therefore coded whether students collaborated during the intervention as another possible 

moderator (0 = individual work, 1 = collaborative work during the intervention). 

Study context. We coded the context in which programming interventions were 

administered, either as embedded in regular lessons or as extracurricular activities.  

Programming language. The programming languages (tools) used during the 

interventions were reported and categorized as ‘text-based programming languages’ (e.g., 

Basic, C, and Java) and ‘visual programming languages’ (e.g., Alice, Logo, and Scratch). 

Intervention length. The length of interventions was extracted and reported in hours. 

In case authors provided the number of school lessons, we assumed an average lesson to last 

about 45 minutes. This assumption may not reflect the true intervention length but provided 

an approximation of it in most educational systems. The true time distribution may therefore 

result in slightly different moderation effects. A lack of reporting the intervention length 

resulted in missing values. 

Cognitive skills. Cognitive skills measures were grouped according to the constructs 

they measured. These constructs comprised broad and narrow categories both of which are 

shown in Table 1. Overall, the outcome measures covered programming skills, skills that 

cannot be assigned to a single domain (i.e., creative thinking, reasoning, spatial skills, and 
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metacognition), and domain-specific skills (i.e., mathematical skills, literacy, and school 

achievement in subjects other than mathematics and literacy). Specifically, creative thinking 

comprised the skills needed to exhibit creative behavior, including originality, fluency, 

flexibility, and elaboration (Hennessy & Amabile, 2010). Creative thinking was mainly 

assessed by validated performance tests, such as the Torrance Test of Creative Thinking. 

Reasoning skills included not only the skills needed to perform logical (formal) reasoning, 

which are considered elements of fluid intelligence and problem solving (McGrew, 2009), but 

also critical thinking skills (i.e., informal reasoning); attention, perception, and memory also 

fell into the category of intelligence, due to their close relation to the reasoning and 

intelligence (Sternberg, 1982). Our classification of these subskills resonated with that 

proposed by Sala and Gobet (2018) and Bediou et al. (2018) in their papers on transfer effects 

of video gaming. Their classification summarized intelligence, attention, memory, and 

perception as general cognitive skills surrounding reasoning skills. By and large, reasoning 

skills were assessed by standardized tests of cognitive abilities and critical thinking (e.g., 

Cornell’s Critical Thinking Test; see Table 1). Spatial skills included the skills to memorize 

and understand spatial objects or processes, and to perform reasoning (Uttal et al., 2013). 

These skills were mostly assessed by standardized tests of the understanding of two- or three-

dimensional objects (Table 1). Metacognition referred to the processes underlying the 

monitoring, adaptation, evaluation, and planning of thinking and behavior (Flavell, 1979), and 

was mostly assessed in conjunction with certain problem-solving tasks. Despite the 

dominance of self-report measures of metacognition, the measures used in the selected studies 

were performance-based and comprised tasks that required, for instance, the representation of 

a problem, the evaluation of problem situations and strategies, the monitoring of students’ 

comprehension, and the integration of new information in the presence of old information 

(Table 1). Mathematical skills comprised mathematical problem solving, modeling, 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 23 

achievement in general (e.g., measured by course grades), and conceptual knowledge (Voss, 

Wiley, & Carretero, 1995). Some of the tests reported in primary studies used standardized 

mathematics tests, whereas others relied on self-developed assessments (Table 1). Literacy 

spanned several knowledge and skills components, including reading, writing, and listening 

skills. Most primary studies presented students with writing tasks and evaluated the written 

pieces against certain linguistic criteria; these tasks were often accompanied by reading 

comprehension tests (Table 1). Finally, school achievement was indicated by performance 

measures in domains other than mathematics and literacy. These measures assessed students’ 

achievement in Earth Sciences, Social Sciences, and Engineering, often measured by national 

or teacher-developed achievement tests in these subjects (Table 1). Although mathematical 

skills and literacy can also be considered aspects of school achievement, we did not assign 

them to this category in order to avoid introducing further heterogeneity which may have 

compromised the comparability of the effect sizes within this category. We further extracted 

information about how these constructs were measured. This information included the origin 

of the tests (i.e., standardized test, performance-based test developed by researchers or 

teachers), along with the available reliability coefficients. 

Type of transfer. On the basis of the coding of cognitive skills at the level of effect 

sizes, we coded whether studies focused on near transfer only (i.e., only programming skills 

were measured), far transfer only (i.e., only skills outside of programming were measured), or 

near and far transfer at the same time (i.e., programming skills and skills outside of 

programming were measured). This variable operated at the study level and allowed us to 

examine its possible moderating effects on the overall transfer effect. 

Statistical study design. For the included studies, we coded the statistical design 

underlying the estimation of effect sizes and the overall study design. Several studies included 

multiple outcome measures, for which pretest and posttest scores were available to a different 
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extent. Generally, the statistical and the overall (implemented) study designs will agree; yet, 

in some cases, they may differ, as the following two examples illustrate: (1) Transfer studies 

with one outcome measure: Although authors reported a pretest-posttest control group design 

to examine the effects of learning to computer programming on mathematical skills, pretest 

and posttest measured entirely different skills in mathematics, for instance, the skills to deal 

with variables (pretest) and conceptual understanding of geometric shapes (posttest). Given 

the non-equivalence of the pretest and posttest, the statistical design was best represented as a 

posttest-only control group design (Carlson & Schmidt, 1999). In such cases, effect sizes were 

extracted using the posttest means and standard deviations only. (2) Transfer studies with 

multiple outcome measures: Statistical study designs sometimes differed within studies, in 

particular when multiple outcomes were measured. For instance, some authors reported both 

pretest and posttest scores for one outcome variable, yet only posttest scores for another 

outcome variable. Whereas the former represents a pretest-posttest design, the latter 

represents a posttest-only design. Hence, statistical study designs are primarily placed at the 

level of effect sizes. In addition to treating the study design as an effect size feature, we also 

coded the overall study design as a study feature using the categories “pretest-posttest 

design”, “posttest-only design”, or “mixed”. Comparable to the types of control groups, this 

variable served as both an effect size- and a study-level moderator. 

Publication status. To examine the extent to which the reported effect sizes were 

moderated by the type of publication, we established publication status as another, possible 

moderating variable. Publication status was thus coded as ‘grey’ or ‘published’. In the current, 

meta-analytic sample, ‘unpublished’ studies did not exist. 

Statistical Analyses 

Several studies provided multiple effect sizes, either because they included multiple 

treatments or control groups, or they reported effects on multiple outcome variables. The 
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reported effect sizes were therefore dependent (Van den Noortgate, López-López, Marín-

Martínez, & Sánchez-Meca, 2013). To account for these dependencies, M. W.-L. Cheung 

(2015) suggested using either multivariate meta-analysis, which models the covariance 

between multiple effect sizes derived from multiple outcomes measures, or three-level 

random-effects modeling, which quantifies the degree of dependence by adding a variance 

component at a third level of clustering (Pastor & Lazowski, 2018). The latter is particularly 

suitable for situations, in which the degree of dependence or covariance among multiple 

outcome variables is unknown (M. W.-L. Cheung, 2014), and returns unbiased estimates of 

fixed effects (Moeyaert et al., 2017). Considering this and the observation that very few 

primary studies reported covariances or correlations between multiple outcomes in the current 

meta-analysis, we decided to account for the clustering of effect sizes in studies by adopting a 

three-level random-effects modeling approach. For the ith effect size in the jth study, this 

approach decomposes the effect size !"#  into the average population effect $%, components 

&'"#  and &())# with level-specific variances +,-.&'"#/ = 1'' and +,-.&)#/ = 1)', and 

residuals 2"# with the known sampling variance +,-.2"#/ = 3"#  (M. W.-L. Cheung, 2014): 

!"# = $% + &'"# + &)# + 2"#  (1) 

Model (1) represents a three-level random-effects model which is based on the standard 

assumptions of multilevel modeling (see M. W.-L. Cheung, 2014, for details). This model 

quantifies sampling variability (level 1), within-study variability (level 2), and between-study 

variability (level 3). To establish which variance components (i.e., within and between 

studies) are statistically significant, we compared four models against each other, using 

likelihood-ratio tests and information criteria: Model 1 represented a random-effects, three-

level model with within- and between-study variances (see equation [1]). Model 2 was a 

random-effects model with only between-study variance, and Model 3 was a random-effects 

model assuming only variation between effect sizes. Finally, Model 4 represented a fixed-
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effects model without any variance component. To quantify the heterogeneity of effect sizes 

at both levels, we estimated the 5' statistics based on the level-2 and level-3 variance 

estimates as follows (Cheung, 2015): 

5'' = 100% ∙ :;<<
:;<<=:;><=?@

 and 5)' = 100% ∙ :;><
:;<<=:;><=?@

  (3) 

In equation (3), 3@ represents the typical within-study sampling variance proposed by Higgins 

and Thompson (2002). 

If statistically significant variation within or between studies exists, the random-effects 

Models 1-3 can be extended to mixed-effects model by introducing covariates (i.e., possible 

moderator variables) at the level of effect sizes and studies. Under the standard assumptions 

of three-level regression, the mixed-effects model with level-2 and level-3 variances and a 

covariate at the level of effect sizes A"# is: 

!"# = $% + $BA"# + &'"# + &)# + 2"#  (2) 

The variance explained by a covariate at the level of effect sizes is estimated by the reduction 

of level-2 variance when comparing models (1) and (2).  We specified all models in the R 

packages ‘metafor’ (Viechtbauer, 2017) and ‘metaSEM’ (M. W.-L. Cheung, 2018) using 

restricted maximum likelihood estimation. Supplementary Material A3 contains the R sample 

code. 

Publication Bias and Sensitivity Analysis 

To test the robustness of the obtained transfer effects, we conducted several analyses 

of publication bias: First, we examined the funnel plot and performed trim-and-fill-analyses 

(Duval & Tweedie, 2000). Second, we compared the effect sizes obtained from published 

studies and grey literature (Schmucker et al., 2017). Third, we examined the p-curve that 

resulted from the statistics underlying the transfer effect sizes (Simonsohn, Nelson, & 

Simmons, 2014). If studies had evidential value, the p-curve should have been right-skewed; a 

left-skewed curve would indicate publication bias (Melby-Lervåg et al., 2016). Fourth, we 
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performed a fail-safe N analysis on the basis of Rosenberg’s weighted procedure (Rosenberg, 

2005). In contrast to other fail-safe N procedures (e.g., Rosenthal’s and Orwin’s procedures), 

Rosenberg proposed a weighted approach, which is applicable to both fixed- and random-

effects models in meta-analysis and might represent the number of unpublished studies better 

than the alternative approaches. Fifth, we applied Vevea’s and Hedges’ (1995) weight 

function procedure that assumes a dependency between the p-value in a study and the 

probability of publication (linked via a weight function). All approaches to publication bias 

were performed in the R packages ‘metafor’ (Viechtbauer, 2017), ‘weightr’ (Coburn & 

Vevea, 2017), and the ‘P-curve Online App’ (Simonsohn, Nelson, & Simmons, 2017). 

We tested the sensitivity of our findings to several factors, including the estimation 

method, the presence of influential cases, the handling of missing data in moderators, and the 

different assumptions on the variance components in the main model. For instance, we 

compared the transfer effects and the existence of possible variation within and between 

studies between restricted maximum likelihood (REML) and maximum likelihood (ML) 

estimation. Existing simulation studies indicate that, although both methods may not differ in 

the estimation of intercepts (i.e., overall effect sizes; Snijders & Bosker, 2012), REML creates 

less biased between-study variance estimates of random-effects models than ML does 

(Veroniki et al., 2016). M. W.-L. Cheung (2013) therefore argued for the use of REML in 

multilevel situations yet suggests comparing the variance components obtained from both 

estimation methods for validation purposes (see also M. W.-L. Cheung, 2014). Furthermore, 

the dataset underlying our meta-analysis may contain influential effect sizes. We therefore 

compared the results of our meta-analysis with and without influential effect sizes. We 

identified influential effect sizes using Viechtbauer’s and Cheung’s (2010) diagnostics based 

on random-effects models in the R package ‘metafor’. These diagnostics included student 

residuals, Cook’s distances, and other leave-one-out deletion measures. 
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Results 

Description of Studies 

Table 2 summarizes the distribution of the study design, sample, and publication 

characteristics among the m = 105 studies and k = 539 effect sizes. Most studies reported 

effect sizes based on pretest-posttest control group designs and random group assignment but 

did not match the experimental groups—hence, they were quasi-experimental. Most studies 

targeted far transfer effects only (87.6 %), and about 70 % of the effect sizes were based on 

untreated control groups. Interventions were mostly conducted during regular school lessons. 

Besides these design features, studies primarily used visual rather than text-based 

programming tools in their interventions. Study participants used these tools to design 

computer games, maneuver robots, or engage in pure programming activities. Control groups, 

however, did not use programming tools, but attended lectures or other forms of instruction 

(see Supplementary Material A2). Standardized and unstandardized test were administered to 

almost the same extent. These tests measured a variety of cognitive skills, with a clear focus 

on reasoning, mathematical, and creative thinking skills. Overall, the sample of participants 

was comprised of mainly primary and secondary school students in Asia and North America. 

The overall sample contained N = 9,139 participants of the primary studies (treatment groups: 

NT = 4,544; control groups: NC = 4,595), with an average sample size of 87 (SD = 72, 

Mdn = 66, range = 14–416). Considering the central tendencies of sample sizes, treatment and 

control groups were balanced (treatment groups: M = 43, SD = 37, Mdn = 30; control groups: 

M = 44, SD = 43, Mdn = 29). On average, interventions lasted for 25 hours and ranged 

between 2 and 120 hours (SD = 20.9, Mdn = 20 hours). Of the study participants, 49.1 % were 

female. Most publications describing the study results dated back to the 1980s and 1990s, 

followed by studies published in the 2010s. 
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Publication bias 

Before quantifying the overall transfer effects, we examined the degree of publication 

bias in the sample of primary studies. The funnel plot indicated some degree of asymmetry 

(see Figure 2a)—this observation was supported by Egger’s regression test, t(537) = 4.10, 

p < .001. Trim-and-fill analysis resulted in an overall transfer effect size of g = 0.43, 

95 % CI = [0.37, 0.50], without any additional studies to be filled left of the mean. 

Rosenberg’s fail-safe N suggested that 77,765 additional effect sizes would be necessary to 

turn the overall transfer effect size into insignificant (with p > .01). Finally, p-curve analyses 

indicated that observed p-values had evidential value, z = -38.9, p < .0001 (continuous test for 

a right-skewed curve; Simonsohn et al., 2014), and that the p-curve was right-skewed (see 

Figure 2b). Vevea’s and Hedges’ (1995) weight function model with a selection function 

based on p-values with cut-off points of 0.05 and 1 resulted in an adjusted overall effect size 

of g = 0.63, 95 % CI = [0.52, 0.74] that was based on random effects. The difference between 

this weighted model and a model containing constant weights (i.e., no publication bias) was 

significant, χ2(1) = 20.4, p < .001. Hence, the publication of effect sizes could depend on the 

reported p-value, because the model adjusted for publication bias fits better than the 

unadjusted model (for more details, please refer to Vevea & Hedges, 1995). Taken together, 

these findings suggest the presence of some publication bias and small-study effects (Egger’s 

test) in the present data. At the same time, p-curve analysis did not uncover the presence of p-

hacking, and the fail-safe N indicated that it is unlikely that the key results obtained from the 

main and moderation models are mainly due to publication bias. 

Overall Transfer Effects 

To aggregate the transfer effects of learning computer programming on cognitive 

skills, including programming skills and skills outside of the programming domain, we 
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established a main (baseline) model, which formed the basis for the subsequent moderator 

analyses of the overall transfer effects. 

Main model (Research Question 1a). To identify the main model, we performed a 

sequence of modeling steps: First, a random-effects three-level model (Model 1) resulted in 

positive and moderate transfer effect, g = 0.49 (m = 105, k = 539, 95 % CI = [0.37, 0.61], z 

= 8.1, p < .001; Model fit: -2LL = 1127.8, df = 3, AIC = 1133.8, BIC = 1146.7). This effect 

was accompanied by significant heterogeneity (Q[538] = 2985.2, p < .001), which also 

surfaced in variation of the effect size within studies (1'' = 0.204, 95 % CI = [0.164, 0.252], 

5'' = 36.7 %) and between studies (1)' = 0.281, 95 % CI = [0.189, 0.415], 5'' = 50.7 %). The 

corresponding profile likelihood plots peaked at both variance estimates, and the log-

likelihood decreased for higher values of these variances—thus, both variance components 

were identifiable (see Supplementary Material A2, Figure S1). The intraclass correlations of 

the true effects were 0.42 (level 2) and 0.58 (level 3), indicating substantial variation within 

and across studies. 

Second, we specified a model with constrained level-2 variance (1'' = 0), but freely 

estimated level-3 variance (Model 2). This model showed the same transfer effect size as the 

three-level model (g = 0.49, 95 % CI = [0.38, 0.61]), along with significant level-3 variance, 

1)' = 0.328, 95 % CI = [0.238, 0.458], 5'' = 82.4 % (Model fit: -2LL = 1589.0, df = 2, 

AIC = 1593.0, BIC = 1601.6). In comparison to Model 1, this model degraded model fit 

significantly, χ2(1) = 461.2, p < .001.  

The third model assumed variation at level 2, yet not at level 3 (1)' = 0), thus 

representing a standard random-effects model (Model 3). This model revealed a positive and 

moderate effect size, which was slightly smaller than that obtained from the three-level model 

(g = 0.43, m = 105, k = 539, 95 % CI = [0.37, 0.49], z = 13.8, p < .001; Model fit: -

2LL = 1266.5, df = 2, AIC = 1270.5, BIC = 1279.1), with significant between-study variation 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 31 

(1'' = 0.415, 95 % CI = [0.352, 0.490], 5'' = 85.6 %). Introducing the constraint of zero level-

3 variance degraded the model fit significantly, as the results of a likelihood-ratio test 

comparing Models 1 and 3 indicated, χ2(1) = 138.7, p < .001. 

The fourth model constrained both level-2 and level-3 variances to zero (1'' = 0, 

1)' = 0), assuming fixed effects (Model 4). The resultant overall transfer effect amounted to 

g = 0.35 (m = 105, k = 539, 95 % CI = [0.33, 0.37], z = 31.1, p < .001; Model fit: -

2LL = 2740.0, df = 1, AIC = 2742.0, BIC = 2746.3). The three-level random-effects model, 

however, fitted the data significantly better than this model, χ2(2) = 1612.2, p < .001.  

Overall, this sequence of model specifications and comparisons indicated significant 

level-2 and level-3 variance of the overall transfer effect and the sensitivity of the overall 

effect size to these variance components. It also showed that the three-level random-effects 

model represented the data best, g = 0.49, m = 105, k = 539, 95 % CI = [0.37, 0.61]. 

Moderator analysis (Research Question 1b). Model 1 formed the basis for further 

moderator analyses. Table 3 shows the results of these analyses for the categorical 

moderators. Significantly higher effects occurred for published literature (g = 0.60, 

95 % CI = [0.45, 0.75]) than for grey literature (g = 0.34, 95 % CI = [0.15, 0.52]; 

QM [1] = 4.67, p = .03). Besides the publication status, only the type of treatment that control 

groups received (i.e., treated vs. untreated) significantly explained level-2 variance, 

QM (1) = 40.12, p < .001, C'' = 16.7 %. More specifically, transfer effect sizes were 

significantly lower for studies including treated control groups (g = 0.16) than for studies 

including untreated control groups (g = 0.65). Concerning the z-transformed, continuous 

moderators at level 3, neither publication year (B = 0.09, SE = 0.06, QM [1] = 2.36, p = .12, 

C)' = 0.0 %), students’ average age (B = -0.07, SE = 0.07, QM [1] = 0.86, p = .35, C)' = 3.6 %), 

the proportion of female students in the study samples (B = -0.07, SE = 0.07, QM [1] = 0.86, 

p = .35, C)' = 1.1 %), nor the intervention length (B = 0.00, SE = 0.06, QM [1] = 0.00, p = .98, 
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C)' = 0.0 %) affected the overall transfer effect, thus leaving large proportions of level-2 and 

level-3 variances unexplained. 

Sensitivity analyses. The variance components of the overall transfer effect, obtained 

from REML, differed only marginally from the ML variances (ML level-2 variance: 

1'' = 0.203, 95 % CI = [0.160, 0.247], 5'' = 37.0 %; ML level-3 variance: 1)' = 0.277, 

95 % CI = [0.169, 0.385], 5'' = 50.3 %; see Supplementary Material A2, Table S1). Some 

moderator variables exhibited missing data. Hence, we compared the variance explanations of 

effect sizes between the maximum likelihood and the full-information maximum likelihood 

(FIML) approaches. The FIML approach handles missing data within the analysis model by 

using all observed effect sizes and study characteristics to compensate the loss if information 

due to missing values (Little et al., 2014) and is implemented in the R package ‘metaSEM’ 

(‘meta3X()’ function; M. W.-L. Cheung, 2018). Overall, the differences in variance 

explanations between FIML and ML, and FIML and REML were only marginal (see 

Supplementary Material A2, Table S2). 

The influential cases diagnostics flagged ten influential effect sizes that were obtained 

from five studies (see Supplementary Material A2, Figure S2). These effect sizes ranged 

between g = 2.10 and g = 8.63 (Mdn = 3.31), with an average of g = 3.99 (SD = 1.99). The 

studies exhibiting these effects all contained primary school students, used visual 

programming tools, and examined transfer effects on cognitive skills outside of programming; 

all other sample and study characteristics differed. After removing these effect sizes, the 

remaining m = 103 studies comprising k = 529 effect sizes were submitted to the three-level 

meta-analysis, following the same procedure as for the full data set. Model 1 fitted the data 

based and revealed a positive, significant, and moderate overall transfer effect size of 

g = 0.41, 95 % CI = [0.32, 0.50], which was slightly lower than the original effect size (see 

Supplementary Material A2, Table S3). The moderator analyses supported the finding that 
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studies comprising treated control groups exhibited significantly smaller transfer effects than 

studies with untreated control groups (see Supplementary Material A2, Table S4). The 

continuous moderation effects did not change after excluding influential cases (see 

Supplementary Material A2, Table S5). Nevertheless, two findings contrasted previous 

moderator analyses with the full data set: First, the difference between published literature 

and grey literature diminished after removing influential cases, suggesting a possible 

reduction of publication bias in the data. Indeed, the funnel plot indicated improved graphical 

symmetry, and the p-curve did not provide evidence for further publication bias (see 

Supplementary Material A2, Figure S3). Second, studies administering standardized tests 

showed a significantly lower transfer effect size (g = 0.33) than studies administering 

unstandardized tests (g = 0.49; QM [1] = 4.56, p = .03, C)' = 7.8 %). Overall, the sensitivity 

analyses showed marginal differences in the overall transfer effects, their variance 

components, and possible moderation effects between the conditions—substantive causes for 

differences could not be identified. 

Near and Far Transfer Effects 

Taking a second step in our meta-analysis, we analyzed the transfer effects for near 

transfer (i.e., effects on programming skills) and far transfer (i.e., effects on cognitive skills 

outside programming). To allow for possible differences in (a) the selection of a main model, 

(b) the within- and between-study variances, and (c) the moderation effects, we conducted 

two separate meta-analyses, following the same procedure as for the overall transfer. 

Main models (Research Questions 2a & 3a). Comparisons between models with 

different variance constraints identified a random-effects model with between-study variation 

of effect sizes (Model 2) as the best-fitting main model for near transfer effects (Table 4; 

please find the forest plot in the Supplementary Material A1); for far transfer effects, the 

random-effects three-level model (Model 1) described the data best (Table 4), indicating 
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significant variance within and between studies. The overall effect size for near transfer was 

high (g = 0.75, m = 13, k = 19, 95 % CI = [0.39, 1.11], z = 4.1, p < .001), and showed 

substantial heterogeneity across studies (5)' = 85.5 %). In contrast, the overall far transfer 

effect size was lower (g = 0.47, m = 102, k = 520, 95 % CI = [0.35, 0.59], z = 7.8, p < .001), 

and showed heterogeneity within (5'' = 37.1 %) and between studies (5)' = 50.0 %) with 

intraclass correlations of 0.43 and 0.57, respectively. For both types of transfer, the profile 

likelihood plots peaked at the estimated variances, testifying to the identification of both 

variances (see Supplementary Material A2, Figures S4 and S5). Overall, the selection of main 

models suggested positive and significant near and far transfer effects. 

Moderator analyses (Research Questions 2b & 3b). The moderator effects differed 

between near and far transfer (see Tables 5 and 6): Whereas neither publication status nor the 

treatment of control groups showed significant moderation for near transfer, far transfer effect 

sizes were significantly lower for treated control groups (g = 0.15) than for untreated control 

groups (g = 0.64) at the level of effect sizes, and significantly higher for published studies 

(g = 0.58) than for grey literature (g = 0.43). Studies with random group assignment 

(g = 0.29) showed lower near transfer effects than for those without (g = 0.95). None of the 

continuous study and sample characteristics moderated the two transfer effects (Table 7). 

Notably, the confidence intervals accompanying near transfer effects were large, due to the 

limited number of studies addressing this type of transfer. Hence, the moderation effects of 

near transfer must be treated with caution. 

Publication bias. As noted earlier, publication status did not explain variance in near 

transfer but in far transfer effects, indicating some bias toward published studies in the latter. 

Moreover, the funnel plots for near and far transfer confirmed this tendency, as they showed 

some skewness only for far transfer (see Supplementary Material A2, Figure S6). Trim-and-

fill analyses suggested adding two more effect sizes for near, yet no further effects for far 
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transfer; for both, fail-safe Ns were large in comparison to the available number of effect sizes 

(see Supplementary Material A2, Table S10). Overall, some publication bias may exist in the 

far transfer effects. 

Sensitivity analyses. To further substantiate the findings surrounding near and 

transfer effects, we replicated the sensitivity analyses conducted for the overall transfer effect. 

Tables S6 to S9 in the Supplementary Material A2 report the results of these analyses. 

Overall, the selection of the main models underlying near and far transfer effects was neither 

affected by the method of estimation (REML vs. ML) nor the exclusion of influential cases 

for the far transfer data set (Tables S6 and S7). The far transfer effect decreased slightly after 

removing influential cases, g = 0.39. Notably, variances decreased after removing influential 

cases. Moderation effects of far transfer did not differ across sensitivity conditions (Tables S8 

and S9). After removing influential cases, the moderation by publication status disappeared 

and the effect of test type became significant for far transfer; indicators of publication bias 

were not affected. Taken together, sensitivity analyses provided evidence for the robustness of 

our findings yet indicated some degree of sensitivity to influential cases. 

Far Transfer Effects by Cognitive Skills and Subskills 

Finally, we aimed at providing a more fine-grained view on the far transfer effects. 

Our initial analyses revealed considerable variation in far transfer effect sizes—variation that 

might be explained by the diversity of cognitive skills assessed in the primary studies. 

Consequently, we addressed this diversity by conducting separate meta-analyses for each 

cognitive skill. These meta-analyses included the selection of a main model, the quantification 

of variance components, and the comparisons of effects between cognitive skills measures. 

Main models (Research Question 4a). For the meta-analytic data sets focusing on 

reasoning, creative thinking, spatial, and mathematical skills, three-level random-effects 

models represented the data best (Model 1); for metacognitive skills, however, only 
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significant between-study variance existed (Model 2; see Table 8). Fixed-effects models 

represented the data for studies assessing literacy and school achievement, due to the small 

number of available effect sizes showing insignificant within- and between-study variation. 

Table S11 in the Supplementary Material A2 details the selection of main models. Moreover, 

Figures S6 to S12 show the profile likelihood plots for each variance component in the meta-

analyses; these plots indicated that all variance components were identified. 

Overall, the largest effects appeared for creative thinking (g = 0.73, 95 % CI = [0.27, 

1.20]), followed by mathematical skills (g = 0.57, 95 % CI = [0.34, 0.80]). We found positive 

and moderate effects for metacognitive skills (g = 0.44, 95 % CI = [0.01, 0.88]), reasoning 

skills (g = 0.37, 95 % CI = [0.23, 0.52]), spatial skills (g = 0.37, 95 % CI = [0.08, 0.67]), and 

school achievement (g = 0.28, 95 % CI = [0.14, 0.42]), all of which were statistically 

significant (p < .05). Nevertheless, we could not find support for positive transfer effects on 

literacy (g = -0.02, 95 % CI = [-0.12, 0.08]). The forest plots for all far transfer effects are 

shown in the Supplementary Material A1. 

Effect size differences across cognitive skills and subskills (Research Question 

4b). To test whether far transfer effects differed significantly across cognitive skills, we 

extended the three-level random-effects models describing far transfer by an additional level, 

that is, the level of skills. This extended, four-level model fitted the data significantly better 

than the three-level model (Model fit: -2LL = 1073.6, df = 4, AIC = 1081.7, BIC = 1098.7; 

Model comparison: χ2(1) = 13.5, p < .001), suggesting that the between-skills variance of 

1D' = 0.045 (95 % CI = [0.009, 0.227], 5D' = 7.8 %, ICC = .089) was significant. Nevertheless, 

the post-hoc tests of effect size differences indicated only few significant differences (see 

Supplementary Material A2, Table S24). Overall, far transfer effects varied across cognitive 

skills. However, although the absolute values of effects (i.e., fixed effects) may suggest a 

hierarchy of transfer effects on cognitive skills, not all effect sizes differed significantly. 
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We further tested whether the types of subskills or the assessment mode (i.e., verbal 

vs. non-verbal) explained variation in transfer effects (see Table 9). Indeed, except for 

mathematical skills, the differentiation into certain subskills moderated the transfer effects on 

reasoning, creative thinking, and spatial skills significantly, explaining up to 66 % of 

variance. Notably, problem solving (g = 0.47), originality (g = 1.28), and spatial memory 

(g = 1.25) benefited the most from learning computer programming. The type of assessment, 

however, did not show any moderation effect. Tables S12 to S16 in Supplementary Material 

A2 give a more detailed account of the effects of additional moderator variables. 

Publication bias. The finding that far transfer effects were moderated by publication 

status for selected cognitive skills indicated the existence of some publication bias. Funnel 

plots, as shown in Figures S13 to S19 (Supplementary Material A2), further uncovered some 

skewness in the plots, especially for the subsets of studies with few effect sizes. Nevertheless, 

the trim-and-fill analyses did not show substantial deviations of Hedges’ g from the original 

effect sizes after adding more effects, except for metacognition (see Supplementary Material 

A2, Table S23). The fail-safe Ns were large in comparison to the number of available effect 

sizes, except for literacy and school achievement. 

Sensitivity analyses. We further found that excluding influential cases reduced the 

variances, especially the between-study variance; however, the decisions for main models 

remained, except in one case (i.e., data on spatial skills no longer showed between-study 

variation). Tables S17 and S18 (Supplementary Material A2) detail the results underlying 

these observations. The main reason for the substantial variance reduction lies in the fact that 

large effect sizes (i.e., those of influential cases) are more influential when sample sizes are 

small. Nevertheless, apart from only few deviations, the effects of moderating variables 

remained in most sensitivity conditions (see Supplementary Material A2, Tables S19 to S22). 

Notably, transfer effects decreased after removing influential cases for reasoning (g = 0.32), 
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creative thinking (g = 0.52), and spatial skills (g = 0.27), yet remained statistically significant. 

The transfer effect on school achievement, however, became insignificant (g = 0.22). These 

findings supported the overall robustness of the results yet point to some sensitivity due to the 

large effects of influential cases in small meta-analytic samples. 

Discussion 

In this meta-analysis, we synthesized the existing research that focused on the 

transferability of learning computer programming to cognitive skills. Adopting a three-level 

random-effects, meta-analytic approach, we identified a positive, overall transfer effect. 

Further differentiating between near and far transfer revealed positive effects for both types of 

transfer. Of the cognitive skills examined for far transfer, the transfer effects were large for 

creative thinking, mathematical skills, and reasoning—other cognitive skills benefited less 

(e.g., school achievement, literacy). Only some of these findings were sensitive to the removal 

of influential cases; all of them were robust across different estimation methods and 

treatments of missing covariates. The status of control group treatment and publication 

moderated most of the transfer effects. Table 10 summarizes these key findings. 

Overall Transfer Effects of Computer Programming 

The overall transfer effect size of g = 0.49 was comparable to that reported by Liao 

and Bright (1991) in their meta-analysis (d = 0.41, p < .05), although we were able to include 

more studies and effect sizes and although we excluded pre-experimental study designs 

without control groups. Despite the differences between our meta-analysis and theirs, the 

overall finding—that is, the existence of positive transfer of moderate effect sizes—could be 

replicated. However, the grand mean of transfer effects Liao (2000) reported in the update of 

the preceding study (d = 0.76) was considerably larger than the one we identified. One 

possible explanation for this deviation might refer to the small sample of primary studies Liao 

(2000) extracted from existing research (m = 22 studies, k = 86 effects). 
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Overall, the positive transfer effect suggested that learning computer programming has 

certain cognitive benefits. This finding may have at least two explanations: First, the cognitive 

skills assessed in the primary studies share conceptual commonalities with programming 

skills. These commonalities may comprise skills that are relevant for both, programming and 

other skills—hence, learning computer programming possibly helps developing other skills 

(Liao & Bright, 1991; Shute et al., 2017). Second, the measures used to assess cognitive skills 

were aligned with what the interventions focused on. This alignment puts the overall effects in 

a different perspective: they may be considered immediate training effects rather than transfer 

effects (Melby-Lervåg et al., 2016). However, the second explanation seems unlikely to us, 

because (a) cognitive skills measures and the programming skills taught during the 

interventions differed (e.g., programming intervention with a standardized test of creativity 

outside the programming domain); (b) the overall effects were only moderate, whereas direct 

effects of aligned measures in programming tended to be larger in a previous meta-analysis 

that synthesized direct training effects (g = 0.64, p < .05; Umapathy & Ritzhaupt, 2017). 

Clearly, differentiating between the types of transfer and cognitive skills could shed further 

light on these explanations. 

The overall effect size we found in our meta-analysis was comparable to those 

obtained from similar transfer effects studies. For instance, examining the effects of chess 

instruction on several cognitive skills, Sala and Gobet (2016) identified a moderate, overall 

effect of g = 0.34 (p < .05) for a sample of 24 studies and 40 effect sizes. Bediou et al. (2018) 

synthesized 90 effect sizes that were derived from 20 intervention studies in the domain of 

video gaming and found a moderate overall effect, g = 0.34, p < .05. Focusing on the same 

domain, Sala et al. (2018) meta-analyzed experimental and quasi-experimental interventions; 

aggregating the effect sizes obtained from these interventions resulted in a range of transfer 

effects from g = -0.04 to g = 0.41. Examining the transfer effects of working memory training, 
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Melby-Lervåg et al. (2016) found an even broader range of effects from g = 0.01 to g = 1.88 

for a variety of cognitive skills measures. Although the list of similar transfer effects studies 

can be extended, this selection of studies shows that (a) the overall transfer effect size of 

learning computer programming (g = 0.49) fell into the range of effects reported for other 

domains; and (b) the effects may vary considerably across cognitive skills. However, the 

effects decreased whenever control groups were engaged in alternative treatments—a finding 

testifying that study designs matter to transfer effects. 

Does Far Transfer of Programming Skills Exist? 

Differentiating between near and far transfer effects revealed strong effects for near 

transfer (g = 0.75) and moderate effects for far transfer (g = 0.47). The former suggests that 

learning computer programming is effective in teaching programming skills. This finding 

supported Lye’s and Koh’s (2014) claim that programming instruction can aid the acquisition 

of programming skills as elements of computational thinking, a concept that goes even 

beyond programming. Furthermore, the reported effect size of near transfer was comparable 

to those reported in a meta-analysis of the effects of pair programming (g = 0.41–0.64, p < 

.05; Umapathy & Ritzhaupt, 2017), and indicated the success of direct transfer, that is, 

transfer to the very skills that were trained during the interventions. 

The finding that far transfer effect existed suggests that learning computer 

programming can support the acquisition of other cognitive skills. The overall claim that 

programming aids other forms of thinking skills can therefore be substantiated. We believe 

that programming skills, as key elements of computational thinking, comprise skillsets that 

are also needed in other domains. In fact, the claims surrounding the transferability of 

computer programming are largely based on this argumentation: For instance, Shute et al. 

(2017) conceptualized programming activities as forms of problem solving. Ambrósio, 

Pereira Júnior, and Georges (2015) argued that programming skills require fluid intelligence 
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and other forms or reasoning—this argument has later been evidenced by a study conducted 

by Román-González et al. (2017). These findings exemplify the commonalities programming 

skills and other cognitive skills share. 

We differentiated transfer effects between cognitive skills and the results indicated the 

differential effectiveness of learning computer programming. Far transfer effects were 

positive and significant for skills that share certain subskills with programming. For instance, 

the largest transfer effects occurred for creative thinking skills. Existing frameworks outlining 

what creative thinking skills entail contain skills that are also relevant for the creation of 

computer code (Scherer, 2016). In fact, Grover and Pea (2013) considered programming “a 

creative process that produces computational artefacts” (p. 39). This process requires 

translating problems into computational models to find original solutions (Clements, 1995; 

Ma, 2006). Indeed, we found that transfer effects were larger for the originality dimension of 

creative thinking than for the other dimensions. Reviewing studies on the malleability of 

creativity (g = 0.68–0.69, p < .05; Ma, 2009; Scott, Leritz, & Mumford, 2004), the effects we 

extracted from programming interventions were comparable in size (g = 0.73). In conclusion, 

it seems that learning computer programming could be as effective as alternative approaches 

to enhancing creativity. 

Shute et al. (2017) reviewed the similarities and differences between programming as 

a part of computational thinking and mathematical thinking and concluded that skills such as 

problem solving and modeling are involved in both. More specifically, both programming and 

mathematical modeling require the abstraction of real-world problems, the formulation as 

computational models, the application of strategies and algorithms to solve them, and the 

interpretation of a solution. These shared subskills may explain the strong and positive 

transfer effects on mathematical skills. Another explanation refers to the tasks used to assess 

mathematical thinking: in several studies, the understanding of geometric concepts and shapes 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 42 

was assessed following an intervention that used the Logo programming language with 

geometric objects. In this sense, the transfer of skills needed to program geometric objects to 

mathematical skills seems obvious (Clements & Sarama, 1997). Yet another explanation is 

that mathematically skilled students are more likely to engage in programming activities and 

therefore excel more than those students who may not be as mathematically skilled as they are 

(Pea & Kurland, 1984). In any case, the transfer effects on mathematical skills (g = 0.57) were 

larger than those found in similar meta-analyses that focused on the transfer effects of chess 

instruction (g = 0.38, p < .05; Sala & Gobet, 2016), technology-based instruction (d = 0.28, p 

< .05; Li & Ma, 2010), music education (d = 0.17, p < .05; Sala & Gobet, 2017b), or working 

memory training (g = 0.06–0.12; Melby-Lervåg et al., 2016). The effect size was comparable 

to that of direct training studies (e.g., d = 0.55–0.58, p < .05; Jacobse & Harskamp, 2011; 

Stockard, Wood, Coughlin, & Khoury, 2018). Thus, learning computer programming might 

be an effective approach to developing students’ mathematical skills. 

Both metacognition and reasoning are involved in programming activities: whereas 

the former comprises activities such as debugging and evaluating solution strategies 

(McCauley et al., 2008), the latter involves algorithmic and logical thinking as well as formal 

and informal reasoning (Shute et al., 2017; Yadav et al., 2017). Considering these activities 

and the existing evidence on the positive effects of teaching metacognitive strategies (e.g., 

self-monitoring) on the transfer of skills (Bransford & Schwartz, 1999; Chen & Klahr, 2008), 

transfer effects were expected; however, they were not as high as those of creativity and 

mathematical skills, possibly due to a larger degree of domain-generality of reasoning and 

metacognition (Greiff et al., 2014). The effects reported in our study (metacognition: g = 0.44, 

p < .05; reasoning: g = 0.37, p < .05) were comparable to those reported in other meta-

analyses (e.g., chess instruction: g = 0.33, p < .05; Sala & Gobet, 2016; programming: 

d = 0.39, Liao, 2000). 
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The finding that spatial skills benefit from learning computer programming may be 

explained by the focus of several transfer studies on geometry objects and the understanding 

of movements (Clements & Sarama, 1997). The resultant transfer effect (g = 0.37) falls in the 

range of transfer studies using video gaming (g = 0.20–0.45, Bediou et al., 2018; Sala et al., 

2018) and working memory training (g = 0.28–0.51; Melby-Lervåg et al., 2016)—it is, 

however, smaller than the average effect of direct training studies of spatial skills (g = 0.47, p 

< .05; Uttal et al., 2013). 

School achievement, primarily in natural and social sciences, was aided the least by 

programming interventions (g = 0.28). Programming interventions did not show any transfer 

effects on literacy. A possible explanation for the former finding may lie in the fact that 

school achievement was assessed by distal measures, such as grades or subject-specific 

tests—measures that tap subject-specific knowledge next to generic skills. We also observed 

that literacy was mainly measured by reading comprehension and writing skills—skills that 

overlap only marginally with programming. Sala and Gobet (2017b) obtained a similar result 

while studying effects of music education on literacy (d = -0.07). We emphasize that the 

number of studies used to study effects on literacy was small, and the interventions presented 

therein may not have been tailored to foster literacy through programming. Despite the 

existing enthusiasm related to the possible transferability of computer programming to 

situations that require literacy (Hutchison, Nadolny, & Estapa, 2016), our meta-analysis does 

not provide support for it. 

Overall, the positive effects of far transfer were not homogeneous across cognitive 

skills and thus necessitated further differentiation. Nevertheless, both the analyses of the full 

data set and the analyses in the sensitivity conditions did not suggest a stringent hierarchy of 

far transfer effects, in which creative thinking, mathematical skills, and metacognition benefit 

the most. Not all differences in effect sizes between cognitive skills were significant, and 
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smaller effects occurred after excluding influential cases so that the “order” of effects 

changed. These results were mainly due to large uncertainties and small meta-analytic 

samples.  

Despite the increasing attention computer programming has received recently (Grover 

& Pea, 2013), programming skills do not transfer equally to different skills—a finding that 

Sala and Gobet (2017a) supported in other domains. The findings of our meta-analysis may 

support a similar reasoning: the more distinct the situations students are invited to transfer 

their skills to are from computer programming the more challenging the far transfer is. 

However, we notice that this evidence cannot be interpreted causally—alternative 

explanations for the existence of far transfer exist. For instance, besides the possible, common 

elements between what is learned during programming interventions and what tasks assessing 

metacognition require as causes for positive far transfer on metacognition, the programming 

interventions may have indeed improved students’ metacognitive skills, such as the evaluation 

and monitoring of problem solving processes (Clements, 1986b). This interpretation assumes 

that learning computer programming may stimulate the development of cognitive skills that 

are required to solve complex problems in other contexts and domains. In any case, the 

positive effect sizes at least suggest that learning programming “does not do harm” to other 

cognitive skills. Denning’s (2017) recent claim that no evidence existed for the transfer of 

programming cannot be substantiated. 

Sensitivity of Findings and Effects of Moderators 

Overall, despite marginal differences in the reported effect sizes, their variance 

components, and the effects of moderators, the sensitivity analyses confirmed the findings we 

presented in our meta-analysis. Nevertheless, further differentiating between the two types of 

transfer and cognitive skills, as it decreases the number of available effect sizes for each of the 

separate meta-analyses, increased the impact of some sensitivity conditions. For instance, the 
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impact of excluding influential effect sizes for creativity decreased the transfer effect size 

substantially. This observation is primarily an effect of smaller meta-analytic samples; yet, 

secondary, more substantive reasons could not be identified. Finally, the sensitivity analyses 

revealed the robustness of reported effects against estimation procedures and the treatment of 

missing covariates. 

Considering our moderator analyses, the treatment of control groups moderated the 

overall and far transfer effect, with larger effect sizes for untreated controls. As we have 

mentioned earlier, it is critical to review the activities the control groups are engaged in to 

obtain a more differentiated view on transfer effects. The fact that transfer effects were 

smaller in studies with treated control groups shows that alternative trainings exist that might 

be equally effective as learning computer programming (Hayes & Stewart, 2016; Salomon & 

Perkins, 1987). 

Similar to the treatment of control groups, publication status moderated the overall and 

far transfer effects, with larger effects for published studies. This finding replicates the 

significant moderation effects in previous meta-analyses (Liao, 2000; Liao & Bright, 1991), 

and may indicate some publication bias toward published studies (Polanin, Tanner-Smith, & 

Hennessy, 2016). For instance, if the grey literature was removed, the overall transfer effect 

size would have increased to g = 0.60. However, these moderation effects were not consistent 

across all types of transfer (i.e., they did not exist for near transfer) and cognitive skills—

considering this, publication bias may not exist to the same extent in all sub-samples. Overall, 

our meta-analysis provides only limited hints on possible reasons for the mixed results of 

transfer effect studies in programming, as only the treatment of control groups and publication 

status moderated the effects. To this end, it remains for future research to clarify which 

additional factors may explain both within- and between-study variation of transfer effects. 
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In contrast to our expectations and the findings reported by Liao and Bright (1991) and 

Liao (2000), study design characteristics neither moderated the overall transfer effects nor 

near and far transfer effects; only for metacognitive and spatial skills, moderation by study 

design and randomization was apparent. The effect sizes extracted from the primary studies 

can therefore be considered homogeneous across designs. Similarly, we did not find any 

contextual moderator effects (i.e., effects of the programming languages, educational level of 

participants, and intervention length). On the one hand, this observation highlights the 

robustness of the results; yet, on the other hand, it complicates the practical implications our 

study may have. At this point, we cannot identify specific conditions under which the transfer 

of programming skills is most effective. The question which instructional approach may foster 

the transfer of programming best remains unanswered. 

Methodological Issues of Transfer Effect Studies 

This meta-analytic review uncovered several methodological issues with studying near 

and far transfer effects of computer programming: First, only few studies included a baseline 

measure to disentangle the training effects of computer programming from the actual transfer 

effects on other constructs. To draw a more detailed picture of the nature of transfer, however, 

baseline measures of programming skills, next to measures of other skills, are needed on all 

measurement occasions (for a general discussion of this issue, please refer to Gagné, Foster, 

& Crowley, 1948; Melby-Lervåg et al., 2016). 

Second, studies including multiple outcome measures often failed to report all relevant 

statistics to calculate precise effect sizes, such as the correlations or covariances between the 

outcome measures. If in fact correlations had been made available for such studies, 

multivariate meta-analysis could have been performed—a second, effective approach to 

handling dependent effect sizes next to three-level meta-analysis (M. W.-L. Cheung, 2014). A 
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combination between multivariate and multilevel meta-analysis could have provided deeper 

insights into the link between multiple outcome variables across studies. 

Third, another concern relates to the sample sizes achieved in the primary studies. 

Most studies included small samples for both the treatment and control groups, thus limiting 

the generalizability of transfer effects under study-specific interventions. Without any doubts, 

these studies also show large standard errors of effect sizes and low statistical power to detect 

transfer effects (Cohen, 1992; Hedges, 1982). 

Fourth, from a substantive perspective, reasoning tests comprised several skills, 

including problem solving, intelligence, and memory. Although these skills might be distinct 

(Leighton & Sternberg, 2003; Ray, 1955), their measures are substantially correlated (e.g., 

Stadler, Becker, Gödker, Leutner, & Greiff, 2015). The current meta-analysis could not 

distinguish between them and therefore considered problem solving, intelligence, and 

memory facets of reasoning. 

Fifth, the programming interventions presented in the primary studies varied 

considerably, for instance, from game design to pure programming activities. This variation, 

however, challenges the interpretation of an overall transfer effect and does not allow for 

drawing conclusion on what approach works best for fostering transfer (Barnett & Ceci, 

2002). We therefore encourage empirical studies that are aimed at replicating the 

effectiveness of interventions for different content areas, contexts, and samples. From our 

perspective, it also remains for future research which factors determine the successful transfer 

of programming skills to other cognitive skills. These factors may well represent the 

conceptual underpinnings, contexts, and instructional approaches of experimental studies, 

next to the psychometric quality of cognitive skills tests (Mayer, 2015). 

Considering that the above-mentioned issues, which are by no means unique to studies 

of the transferability of computer programming (Gagné et al., 1948; Melby-Lervåg et al., 
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2016; Sala & Gobet, 2017a), we believe that an optimal study design includes both treated 

and untreated control groups, contains measures of both programming skills and other 

cognitive skills, and administers pre-, post-, and follow-up tests thereof, with a substantial 

time lag between post- and follow-up testing. These design characteristics allow researchers 

to provide better evidence for the existence of transfer effects. 

Limitations and Future Directions 

Considering the procedures applied in this meta-analysis, we emphasized the 

importance of selecting an appropriate model to estimate the transfer effect sizes in the 

presence of nested data. Testing different assumptions and approaches to describe the data, 

including the assumption of significant within- and between-study variances and the existence 

of random instead of fixed effects, is critical to the selection of meta-analytic models (Card, 

2012). In our meta-analysis, the hierarchical data structure (i.e., effect sizes nested in studies) 

necessitated considering three-level meta-analysis and robust estimation procedures. 

Whenever both within- and between-study variation of effect sizes existed, three-level models 

were specified—if, however, one variance component was not significant, two-level models 

had to be specified. As we differentiated effect sizes across domains (i.e., overall transfer 

effects vs. specific effects on reasoning, programming, and other skills), this analytic 

approach resulted in different meta-analytic baseline models used to synthesize effect sizes 

(i.e., two-level fixed- and random-effects models and three-level random-effects models). 

Although this diversity threatens the comparability of baseline models and thus limits the 

possibilities of effect size comparisons across meta-analyses, a “one-ruler-fits-it-all”-decision 

with one common type of model applied to all types of transfer and cognitive skills could 

have created substantial bias in the estimation of variance components, especially in cases 

where substantial within-study variance across effect sizes exists (Wilson, Polanin, & Lipsey, 
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2016). We believe that further research is needed to explore ways of dealing with such 

situations. 

Conclusion 

Our meta-analysis showed that learning computer programming is associated with 

certain cognitive benefits. These benefits included gains in programming skills, pointing to 

the trainability of computational thinking through programming, and gains in other cognitive 

skills, pointing to the transferability of programming skills. In this meta-analysis, we could 

not confirm the doubts surrounding the far transfer of programming skills (e.g., Denning, 

2017)—far transfer seems to exist for computer programming, yet not for all cognitive skills 

and not to the same extent. We encourage taking a differentiated perspective on the study of 

far transfer—a perspective that considers the diversity of cognitive skills and thus the 

differential effectiveness of programming interventions. The finding that learning computer 

programming aids some cognitive skills more than others is in line with previous meta-

analyses that examined transfer effects of programming and underlines that far transfer is 

more likely to occur in situations that require cognitive skills close to programming. The 

conceptualization of programming as a key element of computational thinking and thus 

problem solving provides a suitable frame for explaining commonalities with other skills. We 

encourage researchers to carefully design transfer effect studies that address the 

methodological issues identified in the current body of research in several domains. 

References 

References marked with an asterisk indicate studies included in the meta-analysis. 

Adams, R. J., Smart, P., & Huff, A. S. (2017). Shades of grey: Guidelines for working with 

the grey literature in systematic reviews for management and organizational studies. 

International Journal of Management Reviews, 19(4), 432-454. 

http://dx.doi.org/10.1111/ijmr.12102 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 50 

*Akcaoglu, M. (2013). Cognitive and Motivational Impacts of Learning Game Design on 

Middle School Children (Order No. 3587683, Doctoral Dissertation), Michigan State 

University, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/1427344597?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (1427344597) 

*Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the Game-Design and 

Learning (GDL) after-school program. Computers & Education, 75, 72-81. 

doi:10.1016/j.compedu.2014.02.003 

*Akdag, F. S. (1985). The effects of computer programming on young children's learning. 

(Order No. 8602964, Doctoral Dissertation), The Ohio State University, Ann Arbor. 

Retrieved from https://search.proquest.com/docview/303418725?accountid=14699 

ProQuest Dissertations & Theses A&I database. (303418725) 

Ambrósio, A., Pereira Júnior, C., & Georges, F. (2015). Digital ink for cognitive assessment 

of computational thinking. Paper presented at the IEEE Frontiers in Education 

Conference (FIE), Madrid, Spain. 

*Au, W. K., & Leung, J. P. (1991). Problem Solving, Instructional Methods and Logo 

Programming. Journal of Educational Computing Research, 7(4), 455-467. 

doi:10.2190/K88Q-RWV1-AVPU-3DTK 

*Baker, S. H. (1987). The effect of learning Logo on the problem-solving skills of elementary 

school children. (Order No. 8602964, Doctoral Dissertation), University of Cincinnati, 

Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303548553?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303418725) 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 51 

*Barker, B. S., & Ansorge, J. (2007). Robotics as Means to Increase Achievement Scores in 

an Informal Learning Environment. Journal of Research on Technology in Education, 

39(3), 229-243. doi:10.1080/15391523.2007.10782481 

Barnett, S. M., & Ceci, S. J. (2002). When and Where Do We Apply What We Learn? A 

Taxonomy for Far Transfer. Psychological Bulletin, 128(4), 612-637. 

http://dx.doi.org/10.1037//0033-2909.128.4.612 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is 

Involved and what is the role of the computer science education community? ACM 

Inroads, 2(1), 48-54. http://dx.doi.org/10.1145/1929887.1929905 

Bassok, M. (1990). Transfer of domain-specific problem-solving procedures. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 16(3), 522-533. 

http://dx.doi.org/10.1037/0278-7393.16.3.522 

Batista, A. L. F., Connolly, T. M., & Angotti, A. P. (2016). A Framework for Games-Based 

Construction Learning: A Text-Based Programming Languages Approach. Paper 

presented at the 10th European Conference on Games Based Learning, At Paisley, 

Scotland. 

*Battista, M. T., & Clements, D. H. (1986). The effects of Logo and CAI problem-solving 

environments on problem-solving abilities and mathematics achievement. Computers 

in Human Behavior, 2(3), 183-193. doi:10.1016/0747-5632(86)90002-6 

*Bebell, D. F. (1988). Higher-level cognitive effects of Logo computer programming and 

problem-solving heuristics instruction. (Order No. 8826276, Doctoral Dissertation), 

University of Denver, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303716651?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303716651) 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 52 

Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). 

Meta-analysis of action video game impact on perceptual, attentional, and cognitive 

skills. Psychological Bulletin, 144(1), 77-110. http://dx.doi.org/10.1037/bul0000130 

*Bernardo, M. A., & Morris, J. D. (1994). Transfer Effects of a High School Computer 

Programming Course on Mathematical Modeling, Procedural Comprehension, and 

Verbal Problem Solution. Journal of Research on Computing in Education, 26(4), 

523-536. http://dx.doi.org/10.1080/08886504.1994.10782108 

*Blackwelder, C. K. (1986). Logo: A possible aid in the development of Piagetian formal 

reasoning (conceptual, cognitive growth). (Order No. 8703946, Doctoral 

Dissertations), Georgia State University, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303475827?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303475827) 

*Block, E. B., Simpson, D. L., & Reid, D. (1987). Teaching young children programming and 

word processing skills: The effects of three preparatory conditions. Journal of 

Educational Computing Research, 3(4), 435-442. http://dx.doi.org/10.2190/TWKV-

24AR-H12K-MFRL 

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to 

meta-analysis. Chichester, West Sussex: John Wiley & Sons, Ltd. 

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking Transfer: A Simple Proposal With 

Multiple Implications. Review of Research in Education, 24(1), 61-100. 

http://dx.doi.org/10.3102/0091732x024001061 

Bransford, J. D., Vye, N., Stevens, R., Kuhl, P., Schwartz, D., Bell, P., . . . Reeves, B. (2005). 

Learning theories and education: Toward a decade of synergy. In P. Alexander & P. 

Winne (Eds.), Handbook of Educational Psychology (2 ed., pp. 209-244). Mahwah, N: 

Lawrence Erlbaum. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 53 

Bray, C. W. (1928). Transfer of learning. Journal of Experimental Psychology, 11(6), 443-

467. http://dx.doi.org/10.1037/h0071273 

*Brown, Q., Mongan, W., Kusic, D., Garbarine, E., Fromm, E., & Fontecchio, A. (2008). 

Computer Aided Instruction As A Vehicle For Problem Solving: Scratch Boards In 

The Middle Years Classroom. Paper presented at the Annual Conference & 

Exposition, Pittsburgh, Pennsylvania. 

*Bruggeman, J. G. (1985). The effects of modeling and inspection methods upon problem 

solving in a computer programming course. (Doctoral Dissertation), Montana State 

University, Bozeman, Montana.    

*Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing 

Mathematical Thinking with Scratch. In G. Conole, T. Klobučar, C. Rensing, J. 

Konert, & É. Lavoué (Eds.), Design for Teaching and Learning in a Networked 

World: 10th European Conference on Technology Enhanced Learning, EC-TEL 2015, 

Toledo, Spain, September 15-18, 2015, Proceedings (pp. 17-27). Cham: Springer 

International Publishing. 

*Campbell, P. F., Fein, G. G., & Schwartz, S. S. (1991). The Effects of Logo Experience on 

First-Grade Children's Ability to Estimate Distance. Journal of Educational 

Computing Research, 7(3), 331-349. doi:10.2190/QJY1-9JEG-0UAY-J30D 

Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY: 

Guilford Press. 

Carlson, K. D., & Schmidt, F. L. (1999). Impact of experimental design on effect size: 

Findings from the research literature on training. Journal of Applied Psychology, 

84(6), 851-862. http://dx.doi.org/10.1037/0021-9010.84.6.851 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 54 

*Cathcart, W. G. (1990). Effects of Logo Instruction on Cognitive Style. Journal of 

Educational Computing Research, 6(2), 231-242. doi:10.2190/XNFC-RC25-FA6M-

B33N 

*Chartier, D. (1996). An evaluation of two cognitive learning methods in adults on pre-

qualification schemes: Logo and logical reasoning workshops (ARL). European 

Journal of Psychology of Education, 11(4), 443-457. 

http://dx.doi.org/10.1007/BF03173283 

Chen, Z., & Klahr, D. (2008). Remote Transfer of Scientific-Reasoning and Problem-Solving 

Strategies in Children. In R. V. Kail (Ed.), Advances in Child Development and 

Behavior (Vol. 36, pp. 419-470): JAI. 

*Cheshire, F. D. (1981). The effect of learning computer programming skills on developing 

cognitive abilities. (Order No. 8117163, Doctoral Dissertation), Arizona State 

University, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303092565?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303092565) 

Cheung, M. W.-L. (2013). Implementing Restricted Maximum Likelihood Estimation in 

Structural Equation Models. Structural Equation Modeling: A Multidisciplinary 

Journal, 20(1), 157-167. http://dx.doi.org/10.1080/10705511.2013.742404 

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A 

structural equation modeling approach. Psychological Methods, 19(2), 211-229. 

http://dx.doi.org/10.1037/a0032968 

Cheung, M. W.-L. (2015). Meta-Analysis: A Structural Equation Modeling Approach. 

Chichester, West Sussex: John Wiley & Sons, Ltd. 

Cheung, M. W.-L. (2018). metaSEM: Meta-Analysis using Structural Equation Modeling 

(Version 1.0.0). Retrieved from https://github.com/mikewlcheung/metasem  



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 55 

*Choi, W. S. (1991). Effect of Pascal and FORTRAN programming instruction on the 

problem-solving cognitive ability in formal operational stage students. (Order No. 

9129372, Doctoral Dissertation), Texas Tech University, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303955348?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303955348) 

Clements, D. H. (1986a). Logo and cognition: A theoretical foundation. Computers in Human 

Behavior, 2(2), 95-110. http://dx.doi.org/10.1016/0747-5632(86)90026-9 

*Clements, D. H. (1986b). Effects of Logo and CAI environments on cognition and creativity. 

Journal of Educational Psychology, 78(4), 309-318. http://dx.doi.org/10.1037/0022-

0663.78.4.309 

*Clements, D. H. (1987). Longitudinal Study of the Effects of Logo Programming on 

Cognitive Abilities and Achievement. Journal of Educational Computing Research, 

3(1), 73-94. doi:10.2190/RCNV-2HYF-60CM-K7K7 

*Clements, D. H. (1990). Metacomponential development in a Logo programming 

environment. Journal of Educational Psychology, 82(1), 141-149. doi:10.1037/0022-

0663.82.1.141 

*Clements, D. H. (1991). Enhancement of Creativity in Computer Environments. American 

Educational Research Journal, 28(1), 173-187. 

http://dx.doi.org/10.3102/00028312028001173 

Clements, D. H. (1995). Teaching creativity with computers. Educational Psychology Review, 

7(2), 141-161. http://dx.doi.org/10.1007/bf02212491 

*Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo 

environment. Journal for Research in Mathematics Education, 20(5), 450-467. 

http://dx.doi.org/10.2307/749420 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 56 

*Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young 

children's cognition. Journal of Educational Psychology, 76(6), 1051-1058. 

http://dx.doi.org/10.1037/0022-0663.76.6.1051 

*Clements, D. H., & Nastasi, B. K. (1988). Social and Cognitive Interactions in Educational 

Computer Environments. American Educational Research Journal, 25(1), 87-106. 

doi:10.3102/00028312025001087 

Clements, D. H., & Sarama, J. (1997). Research on Logo. Computers in the Schools, 14(1-2), 

9-46. http://dx.doi.org/10.1300/J025v14n01_02 

Coburn, K. M., & Vevea, J. L. (2017). weightr: Estimating Weight-Function Models for 

Publication Bias. R package version 1.1.2.  

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. 

http://dx.doi.org/10.1037/0033-2909.112.1.155 

Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on 

mathematical problem-solving transfer. Journal of Educational Psychology, 79(4), 

347-362. http://dx.doi.org/10.1037/0022-0663.79.4.347 

*Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer 

science. ACM SIGCSE Bulletin, 35(1), 191-195. doi:10.1145/792548.611966 

Costa, J. M., & Miranda, G. L. (2017). Relation between Alice software and programming 

learning: a systematic review of the literature and meta-analysis. British Journal of 

Educational Technology, 48(6), 1464-1474. http://dx.doi.org/10.1111/bjet.12496 

*Dalton, D. W. (1986). A Comparison of the Effects of LOGO Use and Teacher-Directed 

Problem-Solving Instruction on the Problem-Solving Skills, Achievement, and 

Attitudes of Low, Average, and High Achieving Junior High School Learners. Paper 

presented at the Annual Convention of the Association for Educational 

Communications and Technology, Las Vegas, NV.  



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 57 

*Dalton, D. W., & Goodrum, D. A. (1991). The Effects of Computer Programming on 

Problem-Solving Skills and Attitudes. Journal of Educational Computing Research, 

7(4), 483-506. doi:10.2190/762V-KV6T-D3D1-KDY2 

*Degelman, D., Free, J. U., Scarlato, M., Blackburn, J. M., & Golden, T. (1986). Concept 

learning in preschool children: Effects of a short-term LOGO experience. Journal of 

Educational Computing Research, 2(2), 199-205. doi:10.2190/RH2K-4AQ7-2598-

TVEA 

Denning, P. J. (2017). Remaining Trouble Spots with Computational Thinking. 

Communications of the ACM, 60(6), 33-39. http://dx.doi.org/10.1145/2998438 

*Dillashaw, F. G., & Bell, S. R. (1985, April 15-18, 1985). Learning Outcomes of Computer 

Programming Instruction for Middle-Grades Students: A Pilot Study. Paper presented 

at the Annual Meeting of the National Association for Research in Science Teaching, 

French Lick Springs, IN. 

Duval, S., & Tweedie, R. (2000). Trim and Fill: A Simple Funnel-Plot–Based Method of 

Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics, 56(2), 455-

463. http://dx.doi.org/10.1111/j.0006-341X.2000.00455.x 

*Dziak, B. S. (1985). Programming computer graphics and the development of concepts in 

geometry. (Doctoral Dissertation), Ohio State University, Columbus, Ohio.    

Erol, O., & Kurt, A. A. (2017). The effects of teaching programming with scratch on pre-

service information technology teachers’ motivation and achievement. Computers in 

Human Behavior, 77, 11-18. http://dx.doi.org/10.1016/j.chb.2017.08.017 

*Fickel, M. G. (1986). The effects of Logo study on problem-solving cognitive abilities of 

sixth-grade students. (Order No. 8614452, Doctoral Dissertation), The University of 

Nebraska - Lincoln, Ann Arbor. Retrieved from 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 58 

https://search.proquest.com/docview/303442646?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303442646) 

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–

developmental inquiry. American Psychologist, 34(10), 906-911. 

http://dx.doi.org/10.1037/0003-066X.34.10.906 

*Flores, A. (1985). Effect of computer programming on the learning of calculus concepts. 

(Order No. 8602996, Doctoral Dissertation), The Ohio State University, Ann Arbor. 

Retrieved from https://search.proquest.com/docview/303376565?accountid=14699 

ProQuest Dissertations & Theses A&I database. (303376565) 

Flórez, F. B., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). 

Changing a Generation’s Way of Thinking: Teaching Computational Thinking 

Through Programming. Review of Educational Research, 87(4), 834-860. 

http://dx.doi.org/10.3102/0034654317710096 

Gagné, R. M., Foster, H., & Crowley, M. E. (1948). The measurement of transfer of training. 

Psychological Bulletin, 45(2), 97-130. http://dx.doi.org/10.1037/h0061154 

*Gallini, J. K. (1987). A Comparison of the Effects of Logo and a CAI Learning Environment 

on Skills Acquisition. Journal of Educational Computing Research, 3(4), 461-477. 

doi:10.2190/JRXE-4CAG-P150-GQ8G 

Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015). Computing Education in K-12 

Schools: A Review of the Literature. Paper presented at the IEEE Global Engineering 

Education Conference (EDUCON), Tallinn, Estonia. 

*Geva, E., & Cohen, R. (1987). Transfer of spatial concepts from Logo to map-reading. 

Retrieved from Toronto, Ontario, Canada: https://eric.ed.gov/?id=ED288608 

*Gibbon, L. W. (2007). Effects of LEGO Mindstorms on convergent and divergent problem-

solving and spatial abilities in fifth and sixth grade students. (Doctoral Dissertation), 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 59 

Seattle Pacific University, Seattle, WA. Retrieved from 

http://adsabs.harvard.edu/abs/2007PhDT........49G   

*González, M. R. (2016). Codigoalfabetización y pensamiento computacional en educación 

primaria y secundaria: validación de un instrumento y evaluación de programas. 

(Doctoral Dissertation), Universidad Nacional de Educación a Distancia. Retrieved 

from https://www.educacion.es/teseo/mostrarRef.do?ref=1313319   

Greeno, J. G., & Middle School Mathematics through Applications Project Group. (1998). 

The situativity of knowing, learning, and research. American Psychologist, 53(1), 5-

26. http://dx.doi.org/10.1037/0003-066X.53.1.5 

Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A. C., & 

Martin, R. (2014). Domain-general problem solving skills and education in the 21st 

century. Educational Research Review, 13, 74-83. 

http://dx.doi.org/10.1016/j.edurev.2014.10.002 

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the 

Field. Educational Researcher, 42(1), 38-43. 

http://dx.doi.org/10.3102/0013189x12463051 

*Hamada, R. M. (1986). The relationship between learning Logo and proficiency in 

mathematics. (Order No. 8623535, Doctoral Dissertation), Columbia University, Ann 

Arbor. Retrieved from 

https://search.proquest.com/docview/303487782?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303487782) 

*Hayes, J., & Stewart, I. (2016). Comparing the effects of derived relational training and 

computer coding on intellectual potential in school-age children. British Journal of 

Educational Psychology, 86(3), 397-411. http://dx.doi.org/10.1111/bjep.12114 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 60 

Hedges, L. V. (1982). Estimation of Effect Size From a Series of Independent Experiments. 

Psychological Bulletin, 92(2), 490-499. http://dx.doi.org/10.1037/0033-2909.92.2.490 

Hennessy, S., & Amabile, T. (2010). Creativity. Annual Review of Psychology, 61, 569-598. 

http://dx.doi.org/10.1146/annurev.psych.093008.100416 

Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. 

Statistics in Medicine, 21(11), 1539-1558. http://dx.doi.org/10.1002/sim.1186 

Hutchison, A., Nadolny, L., & Estapa, A. (2016). Using Coding Apps to Support Literacy 

Instruction and Develop Coding Literacy. The Reading Teacher, 69(5), 493-503. 

http://dx.doi.org/10.1002/trtr.1440 

Jacobse, A., & Harskamp, E. (2011). A meta-analysis of the effects of instructional 

interventions on students’ mathematics achievement. Retrieved from Groningen: 

https://www.rug.nl/research/portal/publications/a-metaanalysis-of-the-effects-of-

instructional-interventions-on-students-mathematics-achievement(1a0ea36d-3ca3-

4639-9bb4-6fa220e50f38).html 

*Jenkins, C. (2015). Poem Generator: A Comparative Quantitative Evaluation of a 

Microworlds-Based Learning Approach for Teaching English. International Journal 

of Education and Development using Information and Communication Technology, 

11(2), 153-167.  

*Johnson-Gentile, K., Clements, D. H., & Battista, M. T. (1994). Effects of Computer and 

Noncomputer Environments on Students' Conceptualizations of Geometric Motions. 

Journal of Educational Computing Research, 11(2), 121-140. 

http://dx.doi.org/10.2190/49EE-8PXL-YY8C-A923 

*Julie, C. (1988). Effects of an integrated computer and manipulative environment on 

preservice elementary teachers' understanding of novel mathematical concepts. (Order 

No. 8815364, Doctoral Dissertation), University of Illinois at Urbana-Champaign, 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 61 

Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303689813?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303689813) 

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. 

Cambridge, MA: The MIT Press. 

Kafai, Y. B., & Burke, Q. (2015). Constructionist Gaming: Understanding the Benefits of 

Making Games for Learning. Educational Psychologist, 50(4), 313-334. 

http://dx.doi.org/10.1080/00461520.2015.1124022 

*Kapa, E. (1999). Problem solving, planning ability and sharing processes with Logo. Journal 

of Computer Assisted Learning, 15(1), 73-84. doi:10.1046/j.1365-2729.1999.151077.x 

*Kazakoff, E. R., & Bers, M. (2012). Programming in a robotics context in the kindergarten 

classroom: The impact on sequencing skills. Journal of Educational Multimedia and 

Hypermedia, 21(4), 371-391.  

*Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based 

intensive robotics and programming workshop on sequencing ability in early 

childhood. Early Childhood Education Journal, 41(4), 245-255. doi:10.1007/s10643-

012-0554-5 

*Kim, B., Kim, T., & Kim, J. (2013). Paper-and-Pencil Programming Strategy toward 

Computational Thinking for Non-Majors: Design Your Solution. Journal of 

Educational Computing Research, 49(4), 437-459. 

http://dx.doi.org/10.2190/EC.49.4.b 

*Kim, S., Chung, K., & Yu, H. (2013). Enhancing Digital Fluency through a Training 

Program for Creative Problem Solving Using Computer Programming. The Journal of 

Creative Behavior, 47(3), 171-199. http://dx.doi.org/10.1002/jocb.30 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 62 

*Kiser, S. S. (1989). Logo programming, metacognitive skills in mathematical problem-

solving, and mathematics achievement. (Order No. 9032983, Doctoral Dissertation), 

The University of North Carolina at Chapel Hill, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303791402?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303791402) 

*Koohang, A. A. (1984). Traditional Method versus Computer-Aided Instruction Method in 

Teaching BASIC Programming to Vocational High School Students. Retrieved from 

Carbondale, IL: 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=

eric2&AN=ED273247 

*Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A Study of the Development 

of Programming Ability and Thinking Skills in High School Students. Journal of 

Educational Computing Research, 2(4), 429-458. doi:10.2190/BKML-B1QV-KDN4-

8ULH 

*Lai, A.-F., & Yang, S.-M. (2011). The learning effect of visualized programming learning 

on 6 th graders' problem solving and logical reasoning abilities. Paper presented at 

the International Conference onElectrical and Control Engineering (ICECE). 

*Lee, K. O. (1995). The effects of computer programming training on the cognitive 

development of 7-8 year-old children. Korean Journal of Child Studies, 16(1), 79-88.  

*Lehrer, R., & Randle, L. (1987). Problem Solving, Metacognition and Composition: The 

Effects of Interactive Software for First-Grade Children. Journal of Educational 

Computing Research, 3(4), 409-427. http://dx.doi.org/10.2190/UFWW-FADF-BK21-

YR5N 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 63 

*Lehrer, R., Guckenberg, T., & Lee, O. (1988). Comparative study of the cognitive 

consequences of inquiry-based Logo instruction. Journal of Educational Psychology, 

80(4), 543-553. doi:10.1037/0022-0663.80.4.543 

*Lehrer, R., Randle, L., & Sancilio, L. (1989). Learning Preproof Geometry With LOGO. 

Cognition and Instruction, 6(2), 159-184. doi:10.1207/s1532690xci0602_2 

Lehtonen, M., Soveri, A., Laine, A., Järvenpää, J., de Bruin, A., & Antfolk, J. (2018). Is 

bilingualism associated with enhanced executive functioning in adults? A meta-

analytic review. Psychological Bulletin. http://dx.doi.org/10.1037/bul0000142 

Leighton, J. P., & Sternberg, R. J. (2003). Reasoning and Problem Solving. In I. B. Weiner 

(Ed.), Handbook of Psychology. Hoboken, NJ: John Wiley & Sons, Inc. 

*Lenamond, D. L. (1992). A comparison of the effects of Lego TC Logo and problem-solving 

software on problem-solving skills. (Order No. 1346643, Master Dissertation), 

University of Houston-Clear Lake, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303997213?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303997213) 

Li, Q., & Ma, X. (2010). A Meta-analysis of the Effects of Computer Technology on School 

Students’ Mathematics Learning. Educational Psychology Review, 22(3), 215–243. 

http://dx.doi.org/10.1007/s10648-010-9125-8 

Liao, Y.-k. C. (2000). A meta-analysis of computer programming on cognitive outcomes: An 

updated synthesis. Paper presented at the Proceedings of World Conference on 

Educational Multimedia, Hypermedia and Telecommunications, Montreal, Canada. 

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of Computer Programming on Cognitive 

Outcomes: A Meta-Analysis. Journal of Educational Computing Research, 7(3), 251-

268. http://dx.doi.org/10.2190/e53g-hh8k-ajrr-k69m 

Lipsey, M. W., & Wilson, D. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 64 

Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, W. G. (2014). On the joys of missing 

data. Journal of Pediatric Psychology, 39(2), 151-162. 

http://dx.doi.org/10.1093/jpepsy/jst048 

*Littlefield, J., Delclos, V. R., Bransford, J. D., Clayton, K. N., & Franks, J. J. (1989). Some 

prerequisites for teaching thinking: Methodological issues in the study of LOGO 

programming. Cognition and Instruction, 6(4), 331-366. 

doi:10.1207/s1532690xci0604_4 

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and 

challenges for future research. The Journal of the Learning Sciences, 15(4), 431-449. 

http://dx.doi.org/10.1207/s15327809jls1504_1 

*Luckow, J. J. (1984). The effects of studying logo turtle graphics on spatial ability. (Doctoral 

Dissertation), Boston University, Boston, MA.    

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational 

thinking through programming: What is next for K-12? Computers in Human 

Behavior, 41, 51-61. http://dx.doi.org/10.1016/j.chb.2014.09.012 

Ma, H.-H. (2006). A Synthetic Analysis of the Effectiveness of Single Components and 

Packages in Creativity Training Programs. Creativity Research Journal, 18(4), 435-

446. http://dx.doi.org/10.1207/s15326934crj1804_3 

Ma, H.-H. (2009). The Effect Size of Variables Associated With Creativity: A Meta-Analysis. 

Creativity Research Journal, 21(1), 30-42. 

http://dx.doi.org/10.1080/10400410802633400 

*Many, W. A., Lockard, J., Abrams, P. D., & Friker, W. (1988). The effect of learning to 

program in Logo on reasoning skills of junior high school students. Journal of 

Educational Computing Research, 4(2), 203-213. doi:10.2190/TC38-RJT8-L241-

DV9W 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 65 

Mayer, R. E. (2015). On the Need for Research Evidence to Guide the Design of Computer 

Games for Learning. Educational Psychologist, 50(4), 349-353. 

http://dx.doi.org/10.1080/00461520.2015.1133307 

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & 

Zander, C. (2008). Debugging: a review of the literature from an educational 

perspective. Computer Science Education, 18(2), 67-92. 

http://dx.doi.org/10.1080/08993400802114581 

McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the 

shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1-10. 

http://dx.doi.org/10.1016/j.intell.2008.08.004 

Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working Memory Training Does Not 

Improve Performance on Measures of Intelligence or Other Measures of "Far 

Transfer": Evidence From a Meta-Analytic Review. Perspectives on Psychological 

Science, 11(4), 512-534. http://dx.doi.org/10.1177/1745691616635612 

*Mevarech, Z. R., & Kramarski, B. (1992). How and how much can cooperative Logo 

environments enhance creativity and social relationships? Learning and Instruction, 

2(3), 259-274. doi:10.1016/0959-4752(92)90012-B 

*Miller, E. A. (1985). The use of Logo-Turtle graphics in a training program to enhance 

spatial visualization. (Doctoral Dissertation), Concordia University, Québec, Canada.    

*Miller, G. E., & Emihovich, C. (1986). The effects of mediated programming instruction on 

preschool children's self-monitoring. Journal of Educational Computing Research, 

2(3), 283-297. doi:10.2190/CEMM-LQHL-XN6D-1U15 

*Miller, R. B., Kelly, G. N., & Kelly, J. T. (1988). Effects of Logo computer programming 

experience on problem solving and spatial relations ability. Contemporary 

Educational Psychology, 13(4), 348-357. doi:10.1016/0361-476X(88)90034-3 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 66 

*Milner, S. (1973). The Effects of Computer Programming on Performance in Mathematics. 

Paper presented at the Annual meeting of the American Educational Research 

Association, New Orleans, Louisiana. 

*Missiuna, C., & et al. (1987). Development and Evaluation of the "Thinking with LOGO" 

Curriculum. Retrieved from Alberta, Canada: 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=

eric2&AN=ED287453 

Moeyaert, M., Ugille, M., Natasha Beretvas, S., Ferron, J., Bunuan, R., & Van den Noortgate, 

W. (2017). Methods for dealing with multiple outcomes in meta-analysis: a 

comparison between averaging effect sizes, robust variance estimation and multilevel 

meta-analysis. International Journal of Social Research Methodology, 20(6), 559-572. 

http://dx.doi.org/10.1080/13645579.2016.1252189 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group, et al. (2009). 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA 

Statement. PLOS Medicine, 6(7), 1-6. http://dx.doi.org/10.1371/journal.pmed.1000097 

Moreno-Leon, J., & Robles, G. (2016). Code to learn with Scratch? A systematic literature 

review. Paper presented at the 2016 IEEE Global Engineering Education Conference 

(EDUCON). 

*Moreno-León, J., Robles, G., & Román-González, M. (2016). Code to Learn: Where Does It 

Belong in the K-12 Curriculum? Journal of Information Technology Education: 

Research, 15, 283-303.  

Morris, S. B. (2008). Estimating Effect Sizes from Pretest-Posttest-Control Group Designs. 

Organizational Research Methods, 11(2), 364-386. doi: 10.1177/1094428106291059 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 67 

*Mynatt, B. T., Smith, K. H., Kamouri, A. L., & Tykodi, T. A. (1986). Which way to 

computer literacy, programming or applications experience? International Journal of 

Man-Machine Studies, 25(5), 557-572. doi:10.1016/S0020-7373(86)80023-2 

Naragon-Gainey, K., McMahon, T. P., & Chacko, T. P. (2017). The structure of common 

emotion regulation strategies: A meta-analytic examination. Psychological Bulletin, 

143(4), 384-427. http://dx.doi.org/10.1037/bul0000093 

*Nastasi, B. K., & Clements, D. H. (1992). Social-cognitive behaviors and higher-order 

thinking in educational computer environments. Learning and Instruction, 2(3), 215-

238. doi:10.1016/0959-4752(92)90010-J 

*Nastasi, B. K., Clements, D. H., & Battista, M. T. (1990). Social-cognitive interactions, 

motivation, and cognitive growth in Logo programming and CAI problem-solving 

environments. Journal of Educational Psychology, 82(1), 150-158. doi:10.1037/0022-

0663.82.1.150 

*Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of Robotics and 

Geospatial Technology Interventions on Youth STEM Learning and Attitudes. 

Journal of Research on Technology in Education, 42(4), 391-408. 

http://dx.doi.org/10.1080/15391523.2010.10782557 

*Olson, J. K. (1985). Using Logo to supplement the teaching of geometric concepts in the 

elementary school classroom. (Doctoral Dissertation), Oklahoma State University. 

Retrieved from https://shareok.org/handle/11244/17733   

*Oprea, J. M. (1984). The effects of computer programming on a student's mathematical 

generalization and understanding of variables. (Order No. 8504061, Doctoral 

Dissertation), The Ohio State University, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303317313?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303317313) 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 68 

*Ortiz, A. M. (2015). Examining students’ proportional reasoning strategy levels as evidence 

of the impact of an integrated LEGO robotics and mathematics learning experience. 

Journal of Technology Education, 26(2), 46-69. 

http://dx.doi.org/10.21061/jte.v26i2.a.3 

*Ortiz, E. (1987). A comparison of a computer programming approach to a textbook 

approach in teaching the mathematics concept "variable" to sixth graders. (Order No. 

8728210, Doctoral Dissertation), Louisiana State University and Agricultural & 

Mechanical College, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303605676?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303605676) 

*Owston, R., Wideman, H., Ronda, N. S., & Brown, C. (2009). Computer game development 

as a literacy activity. Computers & Education, 53(3), 977-989. 

http://dx.doi.org/10.1016/j.compedu.2009.05.015 

Palumbo, D. B. (1990). Programming Language/Problem-Solving Research: A Review of 

Relevant Issues. Review of Educational Research, 60(1), 65-89. 

http://dx.doi.org/10.3102/00346543060001065 

*Palumbo, D. B., & Michael Reed, W. (1991). The Effect of BASIC Programming Language 

Instruction on High School Students’ Problem Solving Ability and Computer Anxiety. 

Journal of Research on Computing in Education, 23(3), 343-372. 

doi:10.1080/08886504.1991.10781967 

*Papaevripidou, M., Constantinou, C. P., & Zacharia, Z. C. (2007). Modeling complex marine 

ecosystems: an investigation of two teaching approaches with fifth graders. Journal of 

Computer Assisted Learning, 23(2), 145-157. doi:10.1111/j.1365-2729.2006.00217.x 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 69 

*Pardamean, B., Evelin, & Honni. (2011). The effect of Logo programming language for 

creativity and problem solving. Paper presented at the Proceedings of the 10th 

WSEAS international conference on E-Activities, Jakarta, Indonesia. 

*Pardamean, B., Suparyanto, T., & Evelin. (2015). Improving Problem-Solving Skills through 

Logo Programming Language. New Educational Review, 41(3), 52-64. 

doi:10.15804/tner.2015.41.3.04 

*Park, J. (2015). Effect of Robotics enhanced inquiry based learning in elementary Science 

education in South Korea. Journal of Computers in Mathematics and Science 

Teaching, 34(1), 71-95.  

Pastor, D. A., & Lazowski, R. A. (2018). On the Multilevel Nature of Meta-Analysis: A 

Tutorial, Comparison of Software Programs, and Discussion of Analytic Choices. 

Multivariate Behavioral Research, 53(1), 74-89. 

http://dx.doi.org/10.1080/00273171.2017.1365684 

*Pea, R. D., & Kurland, D. M. (1984). Logo Programming and the Development of Planning 

Skills. Retrieved from 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=

eric2&AN=ED249930 

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer 

programming. New Ideas in Psychology, 2(2), 137-168. 

http://dx.doi.org/10.1016/0732-118X(84)90018-7 

Perkins, D. N., & Salomon, G. (1992). Transfer of learning. In T. N. Postlethwaite & T. 

Husen (Eds.), International encyclopedia of education (Vol. 2, pp. 6452-6457). 

Oxford, UK: Pergamon Press. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 70 

Polanin, J. R., Tanner-Smith, E. E., & Hennessy, E. A. (2016). Estimating the Difference 

Between Published and Unpublished Effect Sizes: A Meta-Review. Review of 

Educational Research, 86(1), 207-236. http://dx.doi.org/10.3102/0034654315582067 

*Pollock, M. L. (1997). Facilitating cognitive abilities and positive school attitudes among 

elementary school students through Lego-Logo programming. (Order No. 9737665, 

Doctoral Dissertation), North Carolina State University, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/304369072?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (304369072) 

*Poulin-DuBois, D., McGilly, C. A., & Shultz, T. R. (1989). Psychology of Computer Use: 

X. Effect of Learning Logo on Children's Problem-Solving Skills. Psychological 

Reports, 64(3), 1327-1337. doi:10.2466/pr0.1989.64.3c.1327 

*Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school 

students’ reasoning skills and mathematical self-efficacy and problem solving. 

Instructional Science, 45(5), 583-602. http://dx.doi.org/10.1007/s11251-017-9421-5 

Ray, W. S. (1955). Complex tasks for use in human problem-solving research. Psychological 

Bulletin, 52(2), 134-149. http://dx.doi.org/10.1037/h0044763 

*Reding, A. H. (1981). The effects of computer programming on problem solving abilities of 

fifth grade students. (Order No. 8201793, Doctoral Dissertation), University of 

Wyoming, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303188829?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303188829) 

*Reeder, L. K., & Leming, J. S. (1994). The Effect of Logo on the Nonverbal Reasoning 

Ability of Rural and Disadvantaged Third Graders. Journal of Research on Computing 

in Education, 26(4), 558-564. doi:10.1080/08886504.1994.10782111 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 71 

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which 

cognitive abilities underlie computational thinking? Criterion validity of the 

Computational Thinking Test. Computers in Human Behavior, 72, 678-691. 

http://dx.doi.org/10.1016/j.chb.2016.08.047 

*Rose, N. S. (1984). Effects of learning computer programming on the general problem-

solving abilities of fifth grade students. (Doctoral Dissertation), North Texas State 

University, Denton, TX. Retrieved from 

https://digital.library.unt.edu/ark:/67531/metadc331886/   

Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for 

calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464-468. 

http://dx.doi.org/10.1111/j.0014-3820.2005.tb01004.x 

*Rucinski, T. T. (1986). The effects of computer programming on the problem-solving 

strategies of preservice teachers. (Order No. 8701602, Doctoral Dissertation), 

University of Illinois at Urbana-Champaign, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303417189?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303417189) 

Sala, G., & Gobet, F. (2016). Do the benefits of chess instruction transfer to academic and 

cognitive skills? A meta-analysis. Educational Research Review, 18, 46-57. 

http://dx.doi.org/10.1016/j.edurev.2016.02.002 

Sala, G., & Gobet, F. (2016). Do the benefits of chess instruction transfer to academic and 

cognitive skills? A meta-analysis. Educational Research Review, 18, 46-57. 

doi:10.1016/j.edurev.2016.02.002 

Sala, G., & Gobet, F. (2017a). Does Far Transfer Exist? Negative Evidence From Chess, 

Music, and Working Memory Training. Current Directions in Psychological Science, 

26(6), 515-520. http://dx.doi.org/10.1177/0963721417712760 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 72 

Sala, G., & Gobet, F. (2017b). When the music’s over. Does music skill transfer to children’s 

and young adolescents’ cognitive and academic skills? A meta-analysis. Educational 

Research Review, 20, 55-67. http://dx.doi.org/10.1016/j.edurev.2016.11.005 

Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive 

ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2), 

111-139. http://dx.doi.org/10.1037/bul0000139 

Salleh, S. M., Shukur, Z., & Judi, H. M. (2013). Analysis of Research in Programming 

Teaching Tools: An Initial Review. Procedia - Social and Behavioral Sciences, 103, 

127-135. http://dx.doi.org/10.1016/j.sbspro.2013.10.317 

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When 

and how? Journal of Educational Computing Research, 3(2), 149-169. 

https://doi.org/10.2190/6F4Q-7861-QWA5-8PL1 

Scherer, R. (2016). Learning from the past – The need for empirical evidence on the transfer 

effects of computer programming skills. Frontiers in Psychology, 7(1390). 

http://dx.doi.org/10.3389/fpsyg.2016.01390 

Schmidt, F. L., & Hunter, J. E. (2014). Methods of meta-analysis: Correcting error and bias 

in research findings (3 ed.). Thousand Oaks, CA: Sage. 

Schmucker, C. M., Blümle, A., Schell, L. K., Schwarzer, G., Oeller, P., Cabrera, L., . . . on 

behalf of the, O. c. (2017). Systematic review finds that study data not published in 

full text articles have unclear impact on meta-analyses results in medical research. 

PLoS One, 12(4), 1-16. http://dx.doi.org/10.1371/journal.pone.0176210 

Schunk, D. H. (2012). Learning theories: An educational perspective (6th ed.). Boston, MA: 

Pearson Education. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 73 

Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The effectiveness of creativity training: A 

quantitative review. Creativity Research Journal, 16(4), 361-388. 

http://dx.doi.org/10.1080/10400410409534549 

*Seidman, R. H. (1981). The Effects of Learning a Computer Programming Language on the 

Logical Reasoning of School Children. Paper presented at the Annual Meeting of the 

American Educational Research Association, Los Angeles, CA. 

*Seo, Y.-H., & Kim, J.-H. (2016). Analyzing the Effects of Coding Education through Pair 

Programming for the Computational Thinking and Creativity of Elementary School 

Students. Indian Journal of Science and Technology, 9(46). 

http://dx.doi.org/10.17485/ijst/2016/v9i46/107837 

*Shaw, D. G. (1986). Effects of Learning to Program A Computer in BASIC or Logo on 

Problem-solving Abilities. AEDS Journal, 19(2-3), 176-189. 

doi:10.1080/00011037.1986.11008422 

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. 

Educational Research Review, 22, 142-158. 

http://dx.doi.org/10.1016/j.edurev.2017.09.003 

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-Curve: A Key to the File-Drawer. 

Journal of Experimental Psychology: General, 143(2), 534-547. 

http://dx.doi.org/10.1037/a0033242 

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2017). P-curve Online App Version 4.06. 

http://www.p-curve.com/app4/    

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and 

advanced multilevel modeling (2 ed.). London: Sage. 

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and 

advanced multilevel modeling (2 ed.). London: Sage. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 74 

Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem 

solving and intelligence: A meta-analysis. Intelligence, 53, 92-101. 

http://dx.doi.org/10.1016/j.intell.2015.09.005 

Sternberg, R. J. (1982). Reasoning, problem solving, and intelligence. In R. J. Sternberg (Ed.), 

Handbook of Human Intelligence (pp. 225-307). New York, NY: Cambridge 

University Press. 

Stockard, J., Wood, T. W., Coughlin, C., & Khoury, C. R. (2018). The Effectiveness of Direct 

Instruction Curricula: A Meta-Analysis of a Half Century of Research. Review of 

Educational Research. http://dx.doi.org/10.3102/0034654317751919 

*Subhi, T. (1999). The impact of LOGO on gifted children's achievement and creativity. 

Journal of Computer Assisted Learning, 15(2), 98-108. doi:10.1046/j.1365-

2729.1999.152082.x 

Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices 

with teaching and learning on students' learning performance: A meta-analysis and 

research synthesis. Computers & Education, 94, 252-275. 

doi:10.1016/j.compedu.2015.11.008 

*Swan, K. (1991). Programming objects to think with: LOGO and the teaching and learning 

of problem solving. Journal of Educational Computing Research, 7(1), 89-112. 

doi:10.2190/UX0M-NHM2-1G5X-01X4 

*Swan, K., & Black, J. B. (1990). Logo programming, problem solving, and knowledge-based 

instruction. Paper presented at the Annual Meeting of the American Educational 

Research Association, Boston, MA.  

*Taitt, N. P. (1985). The effect of computer programming instruction on the problem solving 

ability of pre-service elementary teachers. (Order No. 8521891, Doctoral 

Dissertation), University of Illinois at Urbana-Champaign, Ann Arbor. Retrieved from 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 75 

https://search.proquest.com/docview/303345336?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303345336) 

*Teahan, M. (2001). The effect of an introductory course in QBasic programming on the 

mathematical problem-solving skills of transition year students and on their attitudes 

to mathematics. (Doctoral Dissertation), Dublin City University, Dublin. Retrieved 

from computing.dcu.ie/wpapers/MCE/2001/0501.ps   

*Thompson, A. D., & Chen Wang, H.-m. (1988). Effects of a Logo microworld on student 

ability to transfer a concept. Journal of Educational Computing Research, 4(3), 335-

347. doi:10.2190/1U7L-33HQ-R2R1-6DCF 

Tsai, K. C. (2013). A Review of the Effectiveness of Creative Training on Adult Learners. 

Journal of Social Science Studies, 1(1), 17. http://dx.doi.org/10.5296/jsss.v1i1.4329 

*Tsuei, M. (1998). The effects of Logo programming and multimedia software on fifth-grade 

students' creativity in Taiwan. (Doctoral Dissertation), The University of Texas at 

Austin, Austin, TX. Retrieved from https://www.learntechlib.org/p/129241   

*Turner, S. V., & Land, M. L. (1988). Cognitive Effects of a Logo-Enriched Mathematics 

Program for Middle School Students. Journal of Educational Computing Research, 

4(4), 443-452. doi:10.2190/R0XH-2VDD-4VFA-YB3H 

Umapathy, K., & Ritzhaupt, A. D. (2017). A Meta-Analysis of Pair-Programming in 

Computer Programming Courses: Implications for Educational Practice. ACM 

Transactions on Computing Education, 17(4), 1-13. 

http://dx.doi.org/10.1145/2996201 

Uribe, D., Klein, J. D., & Sullivan, H. (2003). The effect of computer-mediated collaborative 

learning on solving ill-defined problems. Educational Technology Research & 

Development, 51(1), 5-19. http://dx.doi.org/10.1007/BF02504514 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 76 

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & 

Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training 

studies. Psychological Bulletin, 139(2), 352-402. http://dx.doi.org/10.1037/a0028446 

Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2013). 

Three-level meta-analysis of dependent effect sizes. Behavior Research Methods, 

45(2), 576-594. http://dx.doi.org/10.3758/s13428-012-0261-6 

*VanLengen, C., & Maddux, C. (1990). Does instruction in computer programming improve 

problem solving ability? Journal of IS Education, 12(2), 11-16.  

Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., . . . 

Salanti, G. (2016). Methods to estimate the between-study variance and its uncertainty 

in meta-analysis. Research Synthesis Methods, 7(1), 55-79. 

http://dx.doi.org/10.1002/jrsm.1164 

Vevea, J. L., & Hedges, L. V. (1995). A general linear model for estimating effect size in the 

presence of publication bias. Psychometrika, 60(3), 419-435. 

http://dx.doi.org/10.1007/bf02294384 

Viechtbauer, W. (2017). metafor: Meta-Analysis Package for R. R package version 2.0-0. 

Retrieved from https://cran.r-project.org/web/packages/metafor/index.html 

Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-

analysis. Research Synthesis Methods, 1(2), 112-125. 

http://dx.doi.org/10.1002/jrsm.11 

Vihavainen, A., Airaksinen, J., & Watson, C. (2014). A systematic review of approaches for 

teaching introductory programming and their influence on success. Paper presented at 

the 2014 Tenth Annual Conference on International Computing Education Research 

(ICER), Glasgow, Scotland. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 77 

Voss, J. F., Wiley, J., & Carretero, M. (1995). Acquiring Intellectual Skills. Annual Review of 

Psychology, 46(1), 155-181. http://dx.doi.org/10.1146/annurev.ps.46.020195.001103 

*Weaver, C. L. (1991). Young children learn geometric and spatial concepts using Logo with 

a screen turtle and a floor turtle. (Order No. 9135151, Doctoral Dissertation), State 

University of New York at Buffalo, Ann Arbor. Retrieved from 

https://search.proquest.com/docview/303972489?accountid=14699 ProQuest 

Dissertations & Theses A&I database. (303972489) 

Wilson, S. J., Polanin, J. R., & Lipsey, M. W. (2016). Fitting meta-analytic structural equation 

models with complex datasets. Research Synthesis Methods, 7(2), 121-139. 

http://dx.doi.org/10.1002/jrsm.1199 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 

http://dx.doi.org/10.1145/1118178.1118215 

Woodworth, R. S., & Thorndike, E. L. (1901). The influence of improvement in one mental 

function upon the efficiency of other functions. (I). Psychological Review, 8(3), 247-

261. http://dx.doi.org/10.1037/h0074898 

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational Thinking as an Emerging 

Competence Domain. In M. Mulder (Ed.), Competence-based Vocational and 

Professional Education: Bridging the Worlds of Work and Education (pp. 1051-1067). 

Cham: Springer International Publishing. 

*Yi, B. J., & Eu, L. K. (2016). Effects of using Logo on pupils' learning in two-dimensional 

spaces. Malaysian Online Journal of Educational Technology, 4(3), 27-36.  

*Yoder, V. A. (1988). Exploration of the interaction of the van Hiele levels of thinking with 

Logo and geometry understandings in preservice elementary teachers. (Order No. 

8826845, Doctoral Dissertation), The Pennsylvania State University, Ann Arbor. 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 78 

Retrieved from https://search.proquest.com/docview/303722431?accountid=14699 

ProQuest Dissertations & Theses A&I database. (303722431) 

*Yusuf, M. M. (1995). The Effects of Logo-Based Instruction. Journal of Educational 

Computing Research, 12(4), 335-362. doi:10.2190/NNLP-MN2R-M6CV-9EJF 

 



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 79 

Tables 

Table 1 

Types of Cognitive Skills Measured in Primary Studies 

Cognitive skills Facets of these skills Examples measures and references 

Programming 

skills 

§ Programming skills (including creating, 

modifying, and evaluating programming code) 

§ Programming knowledge (including procedural 

and conceptual knowledge) 

Logo Knowledge Test (syntactic, semantic, schematic, and 

strategic programming knowledge; Lehrer, Lee, & Jong, 1999)  

Computational Thinking Test (Jenkins, 2015) 

Logo Criterion Task (Block, Simpson, & Reid, 1987) 

Reasoning § Intelligence, attention, perception, and memory 

§ Problem solving 

§ Critical thinking 

Cornell Critical Thinking Test (Psycharis & Kallia, 2017) 

Developing Cognitive Abilities Test (Rose, 1984) 

Ross Test of Higher Cognitive Processes (Bebell, 1988) 

Group Assessment of Logical Thinking (Kim, Kim, & Kim, 2013) 

Creative thinking § Flexibility 

§ Fluency 

§ Elaboration 

§ Originality 

Torrance Test of Creative Thinking (Seo & Kim, 2016; Clements, 

1991) 

Spatial skills § Spatial understanding and reasoning 

§ Spatial memory 

Spatial Aptitude Test (Chartier, 1996) 

Eliot-Price Spatial Test (Miller, 1985) 

Metacognition Overall metacognitive skills Assessment of Metacognitive Skills (Clements, 1986b) 
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Awareness of Comprehension Failure Measure (Clements & 

Gullo, 1984) 

Metacognitive Components of Problem Solving (Lehrer & Randle, 

1987) 

Mathematical 

skills 

§ Mathematics achievement, modeling, and 

problem solving 

§ Knowledge about mathematical concepts 

Wide Range Achievement Test (Clements, 1986b) 

California Achievement Test (Bernardo & Morris, 1994) 

Mathematical Proportional Reasoning Test (Ortiz, 2015) 

Geometry Achievement Test (Johnson-Gentile, Clements, & 

Battista, 1994) 

Literacy § General language skills and spelling 

§ Reading 

§ Writing 

Group Reading Assessment and Diagnostic Evaluation, Student 

Writing Test (Owston et al., 2009) 

New York State Holistic Writing Assessment (Lehrer & Randle, 

1987) 

School 

achievement 

School achievement in domains other than 

mathematics and literacy (e.g., Engineering and 

Social Sciences) 

Program Criterion Reference Test (Dalton, 1986) 

Science Achievement Test (Park, 2015) 

Engineering Achievement Test (Nugent et al., 2010) 
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Table 2 

Summary of Study Design, Sample, and Publication Characteristics (m = 105, k = 539) 

Characteristics m k Proportion of 
studies b 

Proportion of 
effect sizes 

Study design and sample characteristics     

Statistical study design  
(coded at the level of effect sizes) 

    

Pretest-posttest control group design 77 363 - 67.3 % 
Posttest-only design 34 176 - 32.7 % 

Statistical study design  
(coded at the level of studies)     

Pretest-posttest control group design 72 335 68.6 % 62.2 % 
Posttest-only design 27 117 25.7 % 21.7 % 
Mixed design 6 87 5.7 % 16.1 % 

Randomization     

Random group assignment 47 304 44.8 % 56.4 % 
Non-random group assignment 58 235 55.2 % 43.6 % 

Treatment of control group(s) 
(coded at the level of effect sizes) 

    

Treated controls 41 163 - 30.2 % 
Untreated controls 80 376 - 69.8 % 

Treatment of control group(s) 
(coded at the level of studies)     

Treated controls 25 88 23.8 % 16.3 % 
Untreated controls 64 268 61.0 % 49.7 % 
Mixed groups 16 183 15.2 % 34.0 % 

Matching #     

Matched 29 158 27.6 % 29.3 % 
Not matched 71 365 67.6 % 67.7 % 

Student collaboration #     

Collaboration 49 303 46.7 % 56.2 % 
No collaboration 21 99 20.0 % 18.4 % 

Programming tool #     

Visual tool 85 467 81.0 % 86.6 % 
Text-based tool 16 55 15.2 % 10.2 % 

Programming context     

Regular school instruction 89 446 84.8 % 82.7 % 
Extra-curricular activities  16 93 15.2 % 17.3 % 

Type of outcome measure     

Standardized test 58 288 - 53.4 % 
Unstandardized test 56 251 - 46.6 % 

Tests developed by researchers 52 235 - 43.6 % 
Tests developed by teachers 6 16 - 3.0 % 
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Cognitive skills measures     

Programming 13 19 - 3.5 % 
Reasoning 59 229 - 42.5 % 
Creative thinking 10 77 - 14.3 % 
Metacognition 10 48 - 8.9 % 
Spatial skills 19 38 - 7.1 % 
Mathematical skills 36 102 - 18.9 % 
Literacy 9 19 - 3.5 % 
School achievement 6 7 - 1.3 % 

Type of transfer     
Near transfer only 3 3 2.9 % 0.6 % 
Far transfer only 92 490 87.6 % 90.9 % 
Near and far transfer 10 46 9.5 % 8.5 % 

Educational level a     

Kindergarten 7 22 6.4 % 4.1 % 
Primary school 68 390 61.8 % 72.4 % 
Secondary school 23 112 20.9 % 20.8 % 
College and university 12 15 10.9 % 2.8 % 

Average age of students #     

5-10 years 25 191 23.8 % 35.4 % 
11-15 years 9 31 8.6 % 5.8 % 
16-20 years 2 6 1.9 % 1.1 % 
> 20 years 2 8 1.9 % 1.5 % 

Location of the study sample     

Asia 15 76 14.2 % 14.1 % 
Europe 8 52 7.5 % 9.6 % 
North America 80 403 75.5 % 74.8 % 
South America 3 8 2.8 % 1.5 % 

Publication characteristics     

Publication status     

Published 62 355 59.0 % 65.9 % 
Grey literature 43 184 41.0 % 34.1 % 

Publication year     

1970-1979 1 2 1.0 % 0.4 % 
1980-1989 51 297 48.6 % 55.1 % 
1990-1999 26 144 24.8 % 26.7 % 
2000-2009 7 17 6.7 % 3.2 % 
2010-2017 20 79 19.0 % 14.7 % 

Note. m = Number of studies, k = Number of effect sizes. 
a The overall number of effect sizes may exceed k = 539, because some studies contained 
samples from different educational levels. 
b Some of these proportions are not provided here, because certain characteristics were 
considered effect size rather than study characteristics. 
# Missing data in moderator variables occurred.
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Table 3 

Categorical Moderator Analyses of the Overall Transfer Effects (m = 105, k = 539) 

Moderator variables m k g  95 % CI QM (df) p QE (df) p !"" !#" 
Study characteristics           

Study design (coded at 
the level of effect sizes) 

          

Pretest-posttest control 
group design 

77 363 0.50 [0.37, 0.63] 0.07 (1) .79 2958.06 (537) < .001 0.0 % 0.0 % 

Posttest-only design 34 176 0.47 [0.30, 0.65]       
Study design (coded at 
the level of study) 

          

Pretest-posttest control 
group design 72 335 0.46 [0.31, 0.60] 1.03 (2) .60 - b - b 0.0 % 0.0 % 

Posttest-only design 27 117 0.53 [0.30, 0.77]       
Mixed design 6 87 0.69 [0.23, 1.16]       

Randomization           
Random group 
assignment 

47 304 0.56 [0.38, 0.73] 1.04 (1) .31 2877.23 (537) < .001 0.0 % 1.1 % 

Non-random group 
assignment 

58 235 0.44 [0.27, 0.60]       

Treatment of control 
group(s) (coded at the 
level of effect sizes) 

          

Treated controls 41 163 0.16 [0.01, 0.33] 40.12 (1) < .001 2897.38 (537) < .001 16.7 % 0.0 % 
Untreated controls 80 376 0.65 [0.51, 0.78]       

Treatment of control 
group(s) (coded at the 
level of studies) 

          

Treated controls 25 88 0.58 [0.33, 0.83] 2.24 (2) .33 - b - b 0.0 % 0.0 % 
Untreated controls 64 268 0.51 [0.36, 0.67]       
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Mixed controls 16 183 0.31 [0.03, 0.59]       
Type of transfer           

Near transfer only 3 3 1.44 [0.53, 2.35] 4.26 (2) .12 - b - b 0.0 % 0.6 % 
Far transfer only 92 490 0.48 [0.35, 0.60]       
Near and far transfer 10 46 0.47 [0.10, 0.84]       

Matching#           
Matched 29 158 0.43 [0.21, 0.65] 0.58 (1) .45 2922.38 (522) < .001 0.0 % 0.0 % 
Not matched 71 365 0.53 [0.39, 0.68]       

Student collaboration#           
Collaboration 49 303 0.55 [0.37, 0.74] 0.34 (1) .56 2376.05 (400) < .001 0.0 % 0.0 % 
No collaboration 21 99 0.45 [0.16, 0.74]       

Programming tool#           
Visual tool 85 467 0.52 [0.38, 0.65] 0.50 (1) .48 2966.95 (520) < .001 0.0 % 0.0 % 
Text-based tool 16 55 0.40 [0.08, 0.71]       

Study context           
Regular lessons 89 446 0.47 [0.34, 0.60] 0.98 (1) .32 2931.26 (537) < .001 0.2 % 0.0 % 
Extracurricular activity 16 93 0.63 [0.33, 0.93]       

Type of outcome measure           
Standardized test 58 288 0.42 [0.28, 0.57] 2.59 (1) .11 2964.88 (537) < .001 0.0 % 3.9 % 
Unstandardized test 56 251 0.57 [0.42, 0.71]       

Sample characteristics           
Educational level a           

Kindergarten 7 22 0.50 [0.01, 1.00] 2.21 (3) .55 2958.63 (535) < .001 0.0 % 0.0 % 
Primary school 68 390 0.56 [0.20, 0.91]       
Secondary school 23 112 0.36 [0.09, 0.62]       
College and university 12 15 0.35 [0.04, 0.66]       

Publication status           
Published literature 62 355 0.60 [0.45, 0.75] 4.67 (1) .03 2877.82 (537) < .001 0.0 % 4.6 % 
Grey literature 43 184 0.34 [0.15, 0.52]       

Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying 

the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance 
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explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after 

introducing moderators (Snijders & Bosker, 2012). For moderators, the number of studies may exceed m = 105, because some of the moderators 

were coded at the effect size rather than the study level. 
a The overall number of effect sizes may exceed k = 539, because some studies contained samples from multiple educational levels. 
b The test for residual heterogeneity failed to converge for this study-level moderator. 
# Missing data in moderator variables occurred. 
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Table 4 

Selection of Models to Estimate Near and Far Transfer Effects 

Model g 95 % CI z $"" [95 % CI] $#" [95 % CI] -2LL (df) AIC BIC Model 
comparison 

LRT 

Near Transfer—Computer programming skills (m = 13, k = 19) 

1 0.75 [0.39, 1.11] 4.1* 0.037 
[0.000, 0.300] 

0.337 
[0.063, 1.119] 

32.5 (3) 38.5 41.2 - - 

2 0.75 [0.39, 1.11] 4.1* 0 0.367 
[0.122, 1.151] 

33.9 (2) 37.9 39.6 1 vs. 2 χ2(1) = 1.3, p = .25 

3 0.66 [0.37, 0.95] 4.4* 0.318 
[0.114, 0.847] 

0 38.6 (2) 42.6 44.3 1 vs. 3 χ2(1) = 6.0* 

4 0.77 [0.66, 0.88] 13.7* 0 0 76.3 (1) 78.3 79.2 1 vs. 4 χ2(2) = 47.7* 

Far Transfer—Cognitive skills other than programming (m = 102, k = 520) 

1 0.47 [0.35, 0.59] 7.8* 0.203 
[0.162, 0.252] 

0.273 
[0.184, 0.404] 

1087.2 (3) 1093.2 1105.9 - - 

2 0.47 [0.36, 0.58] 8.1* 0 0.308 
[0.225, 0.430] 

1492.9 (2) 1496.9 1505.4 1 vs. 2 χ2(1) = 405.8* 

3 0.45 [0.36, 0.49] 13.3* 0.417 
[0.353, 0.494] 

0 1224.6 (2) 1228.6 1237.1 1 vs. 3 χ2(1) = 137.4* 

4 0.33 [0.31, 0.36] 28.9* 0 0 2606.6 (1) 2608.6 2612.9 1 vs. 4 χ2(2) = 1519.5* 
Note. g = Effect size Hedges’ g, 95 % CI = 95 % Wald confidence intervals, $"" = Level-2 variance, $#" = Level-3 variance, -2LL (df) = -2 

×Loglikelihood value with df degrees of freedom, AIC = Akaike’s Information Criterion, BIC = Bayesian Information Criterion, 

LRT = Likelihood-Ratio Test, m = Number of studies, k = Number of effect sizes. 

* p < .01  
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Table 5 

Categorical Moderator Analyses of the Near Transfer Effects (m = 13, k = 19) 

Moderator variables m k g  95 % CI QM (df) p QE (df) p !"" !#" 
Study characteristics           

Study design (coded at 
the levels of effect sizes 
and studies) 

          

Pretest-posttest control 
group design 

8 11 0.70 [0.21, 1.19] 0.14 (1) .71 87.05 (17) < .001 0.0 % 0.0 % 

Posttest-only design 5 8 0.84 [0.24, 1.45]       
Randomization           

Random group 
assignment 

4 8 0.29 [-0.27, 0.86] 3.51 (1) .06 56.63 (17) < .001 0.0 % 25.3 % 

Non-random group 
assignment 

9 11 0.95 [0.56, 1.34]       

Treatment of control 
group(s) (coded at the 
level of effect sizes) 

          

Treated controls 1 1 0.23 [-1.09, 1.54] 0.68 (1) .41 81.99 (17) < .001 0.0 % 0.0 % 
Untreated controls 12 18 0.80 [0.41, 1.19]       

Treatment of control 
group(s) (coded at the 
level of studies) 

          

Treated controls 1 1 0.23 [-1.16, 1.61] 1.02 (2) .60 79.57 (16) < .001 0.0 % 0.0 % 
Untreated controls 10 12 0.86 [0.41, 1.31]       
Mixed controls 2 6 0.52 [-0.43, 1.46]       

Matching           
Matched 2 5 0.22 [-0.70, 1.13] 1.53 (1) .22 72.25 (17) < .001 0.0 % 6.7 % 
Not matched 11 14 0.84 [0.46, 1.22]       

Student collaboration#           
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Collaboration 6 15 0.68 [0.24, 1.12] 0.18 (1) .67 51.55 (12) < .001 0.0 % 0.0 % 
No collaboration 2 3 0.48 [-0.33, 1.29]       

Programming tool#           
Visual tool 10 14 0.82 [0.36, 1.27] 0.01 (1) .92 80.34 (16) < .001 0.0 % 0.0 % 
Text-based tool 2 4 0.76 [-0.21, 1.73]       

Study context           
Regular lessons 9 12 0.69 [0.23, 1.15] 0.28 (1) .60 84.85 (17) < .001 0.0 % 0.0 % 
Extracurricular activity 4 7 0.91 [0.22, 1.61]       

Type of outcome measure           
Standardized test 1 1 0.71 [-0.60, 2.03] 0.01 (1) .95 87.01 (17) < .001 0.0 % 0.0 % 
Unstandardized test 12 18 0.76 [0.36, 1.16]       

Facets of Programming           
Programming skills 11 14 0.70 [0.29, 1.12] 0.44 (1) .51 82.46 (17) < .001 0.0 % 0.0 % 
Programming 
knowledge 

2 5 1.08 [0.05, 2.11]       

Sample characteristics           
Educational level a           

Kindergarten 1 1 0.41 [-1.10, 1.92] 0.43 (3) .93 74.06 (15) < .001 0.0 % 0.0 % 
Primary school 6 11 0.90 [0.24, 1.57]       
Secondary school 5 6 0.69 [-0.02, 1.39]       
College and university 2 3 0.72 [-0.23, 1.67]       

Publication status           
Published literature 10 15 0.72 [0.28, 1.15] 0.13 (1) .72 86.27 (17) < .001 0.0 % 0.0 % 
Grey literature 3 4 0.88 [0.10, 1.66]       

Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying 
the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance 
explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after 
introducing moderators (Snijders & Bosker, 2012). 
a The overall number of effect sizes may exceed k = 19, because some studies contained samples from multiple educational levels. 
# Missing data in moderator variables occurred. 
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Table 6 

Categorical Moderator Analyses of the Far Transfer Effects (m = 102, k = 520) 

Moderator variables m k g  95 % CI QM (df) p QE (df) p !"" !#" 
Study characteristics           

Study design (coded at 
the level of effect sizes) 

          

Pretest-posttest control 
group design 

76 352 0.48 [0.35, 0.62] 0.13 (1) .72 2820.4 (518) < .001 0.0 % 0.0 % 

Posttest-only design 32 168 0.45 [0.27, 0.63]       
Study design (coded at 
the level of study) 

          

Pretest-posttest control 
group design 

71 324 0.44 [0.30, 0.59] 1.06 (2) .59 - b - b 0.0 % 0.0 % 

Posttest-only design 25 109 0.50 [0.26, 0.74]       
Mixed design 6 87 0.69 [0.23, 1.16]       

Randomization           
Random group 
assignment 

46 296 0.57 [0.40, 0.75] 2.29 (1) .13 2698.60 (518) < .001 0.0 % 3.0 % 

Non-random group 
assignment 

56 224 0.39 [0.23, 0.55]       

Treatment of control 
group(s) (coded at the 
level of effect sizes) 

          

Treated controls 41 162 0.15 [-0.02, 0.31] 39.33 (1) < .001 2767.84 (518) < .001 17.2 % 0.0 % 
Untreated controls 76 358 0.64 [0.50, 0.77]       

Treatment of control 
group(s) (coded at the 
level of studies) 

          

Treated controls 25 87 0.59 [0.34, 0.84] 1.95 (2) .38 - b - b 0.0 % 0.0 % 
Untreated controls 61 256 0.48 [0.32, 0.63]       
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Mixed controls 16 177 0.32 [0.04, 0.60]       
Matching#           

Matched 29 153 0.45 [0.22, 0.67] 0.17 (1) .68 2770.22 (502) < .001 0.0 % 0.0 % 
Not matched 68 351 0.50 [0.35, 0.65]       

Student collaboration#           
Collaboration 48 292 0.56 [0.36, 0.75] 0.34 (1) .56 2281.99 (386) < .001 0.0 % 0.0 % 
No collaboration 21 96 0.45 [0.15, 0.75]       

Programming tool#           
Visual tool 82 453 0.50 [0.36, 0.63] 0.47 (1) .50 2821.09 (502) < .001 0.0 % 0.0 % 
Text-based tool 16 51 0.38 [0.07, 0.69]       

Study context           
Regular lessons 87 434 0.45 [0.32, 0.58] 0.53 (1) .47 2798.06 (518) < .001 0.0 % 0.0 % 
Extracurricular activity 15 86 0.58 [0.27, 0.88]       

Type of outcome measure           
Standardized test 58 287 0.41 [0.26, 0.55] 2.60 (1) .11 2831.09 (518) < .001 0.0 % 3.2 % 
Unstandardized test 51 233 0.55 [0.40, 0.70]       

Sample characteristics           
Educational level a           

Kindergarten 6 21 0.51 [-0.02, 1.04] 2.45 (3) .49 2800.63 (516) < .001 0.0 % 0.0 % 
Primary school 67 379 0.53 [0.38, 0.68]       
Secondary school 23 106 0.33 [0.06, 0.59]       
College and university 11 42 0.31 [-0.01, 0.62]       

Publication status           
Published literature 59 340 0.58 [0.42, 0.73] 4.38 (1) .04 2738.92 (518) < .001 0.0 % 4.9 % 
Grey literature 43 180 0.32 [0.02, 0.49]       

Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying 
the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance 
explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after 
introducing moderators (Snijders & Bosker, 2012). a The overall number of effect sizes may exceed k = 520, because some studies contained 
samples from multiple educational levels. b The test for residual heterogeneity failed to converge for this study-level moderator. # Missing data in 
moderator variables occurred. 
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Table 7 

Continuous Moderator Analyses of the Near and Far Transfer Effects 

Moderator variables Intercept SE B SE QM (df) p QE (df) p !"" !#" 
Near Transfer—Computer programming skills (m = 13, k = 19) 

Study characteristics           
Intervention length (in hours) # 0.81 0.25 -0.05 0.23 0.04 (1) .84 66.55 (13) < .001 – 0.0 % 
Publication year 0.74 0.20 0.06 0.19 0.10 (1) .76 84.13 (17) < .001 – 0.0 % 

Sample characteristics           
Average age (in years) # 1.00 0.39 -0.29 0.39 0.55 (1) .46 38.94 (5) < .001 – 0.0 % 
Proportion of female students # 0.91 0.32 -0.24 0.35 0.46 (1) .50 34.52 (6) < .001 – 0.0 % 

Far Transfer—Cognitive skills other than programming (m = 102, k = 520) 
Study characteristics           

Intervention length (in hours) # 0.48 0.07 0.01 0.06 0.02 (1) .88 2237.58 (479) < .001 0.0 % 0.1 % 
Publication year 0.46 0.06 0.07 0.06 1.55 (1) .21 2823.00 (518) < .001 0.3 % 0.0 % 

Sample characteristics           
Average age (in years) # 0.53 0.09 -0.06 0.07 0.72 (1) .40 920.74 (227) < .001 0.0 % 0.0 % 
Proportion of female students# 0.40 0.08 -0.04 0.07 0.33 (1) .57 1727.84 (325) < .001 0.2 % 0.4 % 

Note. QM = Q-statistic underlying the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, 

!"" = Level-2 variance explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or 

level-3 variance after introducing moderators. All moderators were z-standardized. 
# Missing data in moderator variables occurred. 

  



TRANSFER EFFECTS OF COMPUTER PROGRAMMING 92 

Table 8 

Models to Estimate Far Transfer Effects Differentiated by Cognitive Skills 

Cognitive Skills m k g 95 % CI z $"" [95 % CI] $#" [95 % CI] -2LL (df) AIC BIC 
Reasoning 59 229 0.37 [0.23, 0.52] 5.1** 0.067 

[0.035, 0.110] 
0.246 

[0.157, 0.393] 
399.8 (3) 405.8 416.1 

Creative thinking 10 77 0.73 [0.27, 1.20] 3.1** 0.257 
[0.159, 0.417] 

0.505 
[0.159, 1.733] 

160.4 (3) 166.4 173.4 

Metacognition 10 48 0.44 [0.01, 0.88] 2.0* 0 0.433 
[0.156, 1.467] 

87.1 (2) 91.1 94.8 

Spatial skills 19 38 0.37 [0.08, 0.67] 2.5* 0.152 
[0.033, 0.444] 

0.265 
[0.001, 0.888] 

77.4 (3) 83.4 88.2 

Mathematical skills 36 102 0.57 [0.34, 0.80] 4.8** 0.263 
[0.163, 0.420] 

0.321 
[0.147, 0.650] 

228.7 (3) 234.7 242.5 

Literacy 9 19 -0.02 [-0.12, 0.08] -0.4 0 0 21.3 (1) 23.3 24.2 
School achievement 6 7 0.28 [0.14, 0.42] 3.9** 0 0 6.3 (1) 8.3 9.3 

Note. g = Effect size Hedges’ g, 95 % CI = 95 % Wald confidence intervals, $"" = Level-2 variance, $#" = Level-3 variance, -2LL (df) = -2 

×Loglikelihood value with df degrees of freedom, AIC = Akaike’s Information Criterion, BIC = Bayesian Information Criterion, m = Number of 

studies, k = Number of effect sizes.  

* p < .05, ** p < .01 
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Table 9 

Subskill Moderator Analyses of the Transfer Effects by Cognitive Skills 

Moderator variables m k g 95 % CI QM (df) p QE (df) p !"" !#" 
Reasoning skills           

Subskills a           
Intelligence, attention, 
perception, and 
memory 

29 97 0.25 [0.08, 0.43] 4.29 (2) .12 756.02 (226) < .001 0.0 % 8.5 % 

Problem solving 30 112 0.47 [0.30, 0.65]       
Critical thinking 9 20 0.37 [0.07, 0.67]       

Skills assessment #           
Verbal 15 22 0.24 [0.06, 0.42] 0.08 (1) .78 185.43 (91) < .001 0.0 % 0.0 % 
Non-verbal 24 71 0.21 [0.06, 0.36]       

Creative thinking skills           
Subskills a           

Flexibility 8 20 0.39 [-0.10, 0.88] 48.09 (3) < .001 414.31 (73) < .001 52.0 % 2.7 % 
Fluency 10 24 0.44 [-0.04, 0.92]       
Originality 10 25 1.28 [0.80, 1.76]       
Elaboration 9 18 0.56 [0.06, 1.06]       

Skills assessment #           
Verbal 3 13 0.71 [0.25, 1.19] 0.01 (1) .96 679.28 (67) < .001 2.8 % 0.6 % 
Non-verbal 10 56 0.72 [0.25, 1.19]       

Spatial skill           
Subskills a           

Spatial understanding 
and reasoning 

 18 34 0.28 [0.03, 0.52] 4.74 (1) .03 116.25 (36) < .001 0.0 % 66.3 % 

Spatial memory 1 4 1.25 [0.41, 2.10]       

Mathematical skills           
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Subskills a           
Mathematics 
achievement, 
modeling, and problem 
solving 

20 38 0.45 [0.14, 0.76] 1.22 (1) .27 800.91 (100) < .001 0.1 % 0.5 % 

Mathematical concepts 20 64 0.66 [0.38, 0.95]       
Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying 

the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance 

explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after 

introducing moderators (Snijders & Bosker, 2012).  

a The overall number of effect sizes may exceed the overall number of effect sizes (k), because some studies administered tests targeted at 

multiple subskills.  

# Missing data in moderator variables occurred. 
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Table 10 

Summary of Key Findings 

Research Questions (RQs) Key Findings 

RQ1a. Overall transfer effect size g = 0.49, 95 % CI = [0.37, 0.61] 

RQ1b. Moderators Treatment of control group(s), publication status 

RQ2a. Near transfer effect size g = 0.75, 95 % CI = [0.39, 1.11] 

RQ2b. Moderators Randomization of experimental groups 

RQ3a. Overall far transfer effect 

size 

g = 0.47, 95 % CI = [0.35, 0.59] 

RQ3b. Moderators Treatment of control group(s), publication status 

RQ4a. Far transfer effects by 

cognitive skills 

• Reasoning: g = 0.37, 95 % CI = [0.23, 0.52] 

• Creative thinking: g = 0.73, 95 % CI = [0.27, 1.20] 

• Metacognition: g = 0.44, 95 % CI = [0.01, 0.88] 

• Spatial skills: g = 0.37, 95 % CI = [0.08, 0.67] 

• Mathematical skills: g = 0.57, 95 % CI = [0.34, 0.80] 

• Literacy: g = -0.02, 95 % CI = [-0.12, 0.08] 

• School achievement: g = 0.28, 95 % CI = [0.14, 0.42] 

RQ4b. Differences in effect sizes 

by cognitive skill 

Significant differences existed—8.0 % variance 

explanation by differences between cognitive skills 
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Figures 

 

Figure 1. Flow diagram describing the literature search and the selection of eligible transfer 

effect studies (adapted from the PRISMA Statement; Moher, Liberati, Tetzlaff, Altman, & 

The PRISMA Group, 2009). 
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(a) 

 

(b) 

 

Figure 2. (a) Funnel plot and (b) p-curve of the full data set (m = 105, k = 539). 

 


