
TRANSFER EFFECTS OF COMPUTER PROGRAMMING 1

The Cognitive Benefits of Learning Computer Programming:

A Meta-Analysis of Transfer Effects

Ronny Scherer

University of Oslo, Norway

Fazilat Siddiq

Nordic Institute for Studies in Innovation, Research and Education (NIFU), Norway

Bárbara Sánchez Viveros

Humboldt-Universität zu Berlin, Germany

Author Note

Ronny Scherer, Department of Teacher Education and School Research (ILS) &

Centre for Educational Measurement at the University of Oslo (CEMO), Faculty of

Educational Sciences, University of Oslo; Fazilat Siddiq, Nordic Institute for Studies in

Innovation, Research and Education (NIFU), Oslo; Bárbara Sánchez Viveros, Faculty of Life

Sciences, Humboldt-Universität zu Berlin, Germany.

Correspondence concerning this article should be addressed to Ronny Scherer, Faculty

of Educational Sciences, Department of Teacher Education and School Research (ILS),

Postbox 1099 Blindern, 0317 Oslo, Norway. E-Mail: ronny.scherer@cemo.uio.no

	
	
© 2018, American Psychological Association. This paper is not the copy of record and may

not exactly replicate the final, authoritative version of the article. Please do not copy or cite

without authors’ permission. The final article will be available, upon publication, via its DOI:

10.1037/edu0000314

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 2

Abstract

Does computer programming teach students how to think? Learning to program computers

has gained considerable popularity, and educational systems around the world are

encouraging students in schools and even children in kindergartens to engage in programming

activities. This popularity is based on the claim that learning computer programming

improves cognitive skills, including creativity, reasoning, and mathematical skills. In this

meta-analysis, we tested this claim performing a three-level, random-effects meta-analysis on

a sample of 105 studies and 539 effect sizes. We found evidence for a moderate, overall

transfer effect (g = 0.49, 95 % CI = [0.37, 0.61]), and identified a strong effect for near

transfer (g = 0.75, 95 % CI = [0.39, 1.11]) and a moderate effect for far transfer (g = 0.47,

95 % CI = [0.35, 0.59]). Positive transfer to situations that required creative thinking,

mathematical skills, and metacognition, followed by spatial skills and reasoning existed.

School achievement and literacy, however, benefited the least from learning to program.

Moderator analyses revealed significantly larger transfer effects for studies with untreated

control groups than those with treated (active) control groups. Moreover, published studies

exhibited larger effects than grey literature. These findings shed light on the cognitive benefits

associated with learning computer programming and contribute to the current debate

surrounding the conceptualization of computer programming as a form of problem solving.

Keywords: Cognitive skills; computational thinking; computer programming; three-

level meta-analysis; transfer of skills

Educational Impact and Implications Statement: In this meta-analysis, we tested the

claim that learning how to program a computer improves cognitive skills even beyond

programming. The results suggested that students who learned computer programming

outperformed those who did not in programming skills and other cognitive skills, such as

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 3

creative thinking, mathematical skills, metacognition, and reasoning. Learning computer

programming has certain cognitive benefits for other domains.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 4

The Cognitive Benefits of Learning Computer Programming:

A Meta-Analysis of Transfer Effects

Computer programming is an activity similar to solving problems in other domains: It

requires skills, such as decomposing, abstracting, iterating, and generalizing, that are also

required in mathematics and science—in fact, these skills are critical to human cognition

(Román-González, Pérez-González, & Jiménez-Fernández, 2017; Shute, Sun, & Asbell-

Clarke, 2017). Acknowledging these commonalities between the skills required in

programming and the skills required to solve problems in other domains, researchers and

computer scientists have claimed that learning to program computers has certain cognitive

benefits (Grover & Pea, 2013; Liao & Bright, 1991; Pea & Kurland, 1984). According to this

hypothesis, intervention studies that are aimed at fostering programming skills should not

only reveal direct training effects but also transfer effects to situations that require other

cognitive skills. Yet, the current research abounds in conflicting findings, as there is evidence

both for and against the transferability of learning computer programming (Scherer, 2016),

and some researchers claimed that far transfer does not exist (Denning, 2017). This

observation is by no means unique to programming: Sala and Gobet (2017a) reviewed several

meta-analyses in the domains of chess instruction, music education, and working memory

training and concluded that so-called ‘far transfer’ (i.e., the transfer of knowledge or skills

between two dissimilar contexts) may not exist. However, does this hold for learning to

program computers as well? With the current meta-analysis, we investigated this question by

testing the hypothesis that programming interventions have certain cognitive benefits. In

particular, we examined (a) the overall transfer effect of learning computer programming, (b)

the near transfer effects to situations that require programming skills and the far transfer

effects to situations that require skills outside of programming, and (c) the differential far

effects computer programming interventions may have in situations that require different

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 5

types of cognitive skills. In this meta-analysis, programming skills were defined as the skills

to create, modify, and evaluate code and the knowledge about programming concepts and

procedures (e.g., objects, algorithms). These two dimensions are referred to as

‘Computational concepts’ and ‘Computational practices’ in the existing frameworks of

computational thinking (Lye & Koh, 2014).

The Transfer of Skills

The question whether acquired knowledge and skills can be transferred from one

context or problem to another is key to cognitive and educational psychology. In fact, the

transfer of learning lies in the very heart of education, as it taps the flexible application of

what has been learned (Barnett & Ceci, 2002). Perkins and Salomon (1992) understood

transfer as a situation in which learning in one context impacts learning and performance in

other, perhaps new contexts. Although researchers agreed on this definition (Bransford &

Schwartz, 1999), some questions remain: Which conditions foster successful transfer? What

characterizes “other” or “new” contexts?

In their seminal article, Woodworth and Thorndike (1901) considered improvements

in basic cognitive skills and the transfer to situations that require other cognitive skills. Their

main proposal for explaining successful transfer is referred to as the ‘Theory of Common

Elements’—a theory hypothesizing that the degree of successful transfer depends on the

elements two different contexts or problem situations share. The authors argued that the

transfer of skills between situations that have less in common (i.e., require only few shared

skills or knowledge elements) occurs less often than transfer between closely related

situations (see also Bray, 1928). Barnett and Ceci (2002) pointed out that the Theory of

Common Elements has led to the distinction between near and far transfer. In this context,

near transfer refers to successful transfer between similar contexts, that is, contexts that are

closely related and require the performance of similar skills and strategies; far transfer refers

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 6

to successful transfer between dissimilar contexts, that is, contexts that are inherently different

and may require different skills or strategies (Perkins & Salomon, 1992). In essence, the

transfer of skills depends on the similarity and overlap between the contexts and problems in

which the skills were acquired and those presented later on (Schunk, 2012). The issue with

these definitions lies in the concepts of similarity and difference, both of which are features of

the specific problem situations (Bransford et al., 2005). Greeno et al. (1998) emphasized that

the transfer of skills to other contexts is highly situation-specific, that is, it largely depends on

the situations in which the skills have been acquired previously—in other words, transfer is

situated in experience and is influenced by the participation in previous activities (see also

Lobato, 2006). Bransford and Schwartz (1999) pointed out that prior knowledge forms an

additional prerequisite for successful transfer, in particular the knowledge about structure of a

problem situation, the variables involved, and solution strategies (e.g., Bassok, 1990; Chen &

Klahr, 2008; Cooper & Sweller, 1987). It therefore seems that the acquisition of schemata to

solve problems may foster the transfer of learning between problem situations.

Although the existence of far transfer was often denied (Barnett & Ceci, 2002;

Denning, 2017), several studies provided evidence for far transfer, yet to varying degrees

(Bransford & Schwartz, 1999). In a recent review paper, Sala and Gobet (2017a) questioned

the existence of far transfer and referred to a series of meta-analyses in the domains of chess

instruction and music education. Indeed, the meta-analyses the authors referred to provided

only limited evidence for far transfer effects—successful transfer could only be found in

situations that required skills similar to those trained in the interventions. Melby-Lervåg,

Redick, and Hulme (2016) supported this finding by their meta-analysis of working memory

training, and so did Sala, Tatlidil, and Gobet (2018) in their meta-analysis of video gaming.

These findings suggest that far transfer may be differentially effective for improving cognitive

skills. Overall, our brief review of the existing literature of transfer revealed that (a) transfer is

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 7

more likely to occur between closely related contexts or problem situations; (b) the success of

transfer depends on schematic knowledge; (c) far transfer may differ across contexts.

The Transfer of Programming Skills

Programming skills are considered critical to the development of “computational

thinking”—a concept that “involves solving problems, designing systems, and understanding

human behavior, by drawing on the concepts fundamental to computer science” (Wing, 2006,

p. 33). In their seminal review, Shute et al. (2017) named five cognitive processes involved in

computational thinking: Problem reformulation, recursion, problem decomposition,

abstraction, and systematic testing. These skills defined the concept as a form of problem

solving (Lye & Koh, 2014). Despite the close relationship between programming skills and

computational thinking, the two concepts are not identical—the latter also entails taking

computational perspectives (i.e., students’ understanding of themselves and their interaction

with others and with technology; Shute et al., 2017) as an element of computational

participation (Kafai & Burke, 2014). Nevertheless, the processes involved in programming

require problem-solving skills, such as decomposing problems, applying algorithms,

abstracting, and automatizing, and ultimately aid the acquisition of computational thinking

skills (Yadav, Good, Voogt, & Fisser, 2017). Programming may therefore be considered a

way of teaching and learning computational thinking (Flórez et al., 2017), a way of assessing

computational thinking (Grover & Pea, 2013), and a way of exposing students to

computational thinking by creating computational artefacts, such as source code or computer

programs (Lye & Koh, 2014). Barr and Stephenson (2011), as they compared core

computational thinking with the demands of solving problems in STEM domains, concluded

that programming skills, computational thinking, and problem solving are intertwined.

In this meta-analysis, we define programming skills as the skills to create, modify, and

evaluate code and the conceptual and procedural knowledge needed to apply these skills, for

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 8

instance, in order to solve problems—a definition close to that of computational thinking.

This definition includes two key dimensions of computational thinking: computational

concepts (i.e., syntactic, semantic, and schematic knowledge) and computational practices

(strategic knowledge and problem solving; e.g., Lye & Koh, 2014). Hence, the research on the

transfer of programming skills we review here also targets aspects of the transfer of

computational thinking skills.

As learning computer programming engages students in problem solving activities,

transfer effects on students’ performance in situations that require problem solving seem

likely (Shute et al., 2017). Although Pea and Kurland (1984) doubted the existence of such

effects, they still argue that some effects on thinking skills that are close to programming may

exist. Part of this argument is the observation that problem solving and programming skills

share certain subskills. In a conceptual review of problem solving, creative thinking, and

programming skills, Scherer (2016) listed several subskills that are required to successfully

solve tasks in these three domains. The author concludes that these commonalities provide

sufficient ground to expect a positive transfer between them. Clements (1995) established that

creativity plays a role in programming, and Grover and Pea (2013) supported this perspective.

Reviewing further domains and contexts, Clements (1986a) claimed that programming skills

can even be assigned to the cognitive dimensions of intelligence frameworks—hence, a

transfer of programming skills to intelligence tasks seems likely. The author further suggested

considering metacognitive skills as integral parts of programming. Finally, Shute et al. (2017)

identified problem solving and modeling as two commonalities between programming and

mathematical skills, arguing for the existence of transfer effects. The list of cognitive skills

that overlap with programming could be extended even further (for a detailed overview,

please refer to Scherer, 2016). However, the selection presented here already points into one

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 9

direction: programming skills and other cognitive skills share important subskills, and transfer

effects of learning computer programming may therefore exist.

A recently published, cross-sectional study of computational thinking provided some

evidence supporting this reasoning: Román-González et al. (2017) developed a performance

test of computational thinking and administered it to 1,251 Spanish students in grade levels 5

to 10. The results showed that computational thinking was significantly and positively related

to other cognitive skills, including spatial skills (r = .44), reasoning skills (r = .44), and

problem-solving skills (r = .67). Drawing from the Cattell-Horn-Carroll [CHC] theory

(McGrew, 2009), Román-González et al. (2017) concluded that computational thinking,

operationally defined and measured as what we consider programming skills in this meta-

analysis, represents a form of problem solving. Although these findings suggest that

programming skills overlap with other cognitive skills, they do not provide evidence for the

transferability of programming skills, due to the lack of experimental manipulation.

Previous Meta-Analyses on the Transfer of Programming Skills

Two meta-analyses addressed the transferability of programming skills, both of which

resulted in positive and significant effect sizes. The first meta-analysis synthesized 432 effect

sizes from 65 studies that presented students with programming activities and administered

assessments of cognitive skills (Liao & Bright, 1991). Using a random-effects model, Liao

and Bright obtained an overall effect size of d = 0.41 (p < .01) and thus supported the claim

that programming skills can be transferred. Liao and Bright further found that this overall

transfer effect size was moderated by the type of publication (with largest effects for

published articles in the database ERIC), grade level (with largest effects for college and K-3

students), the programming language used during the intervention (with largest effects for

Logo and BASIC), and the duration of the intervention (with largest effects for short-term

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 10

interventions). Neither the design of the primary studies nor the year of publication explained

variation in the overall effect size.

Although this study provided evidence for the transferability of computer

programming based on a large sample of effect sizes, we believe that it has got two

shortcomings: First, the authors reported an overall effect size for transfer without

differentiating between cognitive skills. Existing meta-analyses that examined transfer effects

in other domains, however, found that transfer effects vary considerably across cognitive

skills (Melby-Lervåg et al., 2016; Sala & Gobet, 2016). In other words, transfer intervention

studies may be particularly effective in situations that require cognitive skills close to the

trained skills (Sala & Gobet, 2017a). Second, Liao and Bright (1991) included a dataset that

comprised 432 effect sizes from 65 studies—a dataset that clearly had a nested structure (i.e.,

effect sizes were nested in studies). Considering the recent methodological advancements of

meta-analyses (M. W.-L. Cheung, 2014), a three-level random-effects modelling approach

would have been more appropriate than the random-effects model Liao and Bright specified,

as it quantifies both within- and between-study variation.

In the second meta-analysis, Liao (2000) updated the former meta-analysis and

included 22 interventions and 86 effect sizes that were published between 1989 and 1999.

Aggregating these effects resulted in a large overall transfer effect of d = 0.76 (p < .05). In

contrast to the original meta-analysis, pre-experimental study designs were included (e.g.,

one-group pretest-posttest designs). Considering that these designs provided the smallest

transfer effects (d = 0.45) among all other designs (d = 0.56–2.12), their inclusion may have

biased the overall effect. Moreover, the reported effects must be interpreted with caution,

given the small sample size of studies and effect sizes. In contrast to Liao and Bright (1991),

Liao (2000) tested whether transfer effects differed across cognitive skills. Indeed, the

strongest effects occurred for the near transfer of skills (d = 2.48), whereas the smallest effects

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 11

occurred for the far transfer to creative thinking situations (d = -0.13). Other skills such as

critical thinking, problem solving, metacognition, and spatial skills benefited from learning

computer programming moderately (d = 0.37–0.58).

Uttal et al. (2013) included seven studies that administered programming interventions

to enhance students’ spatial skills. Although the authors did not report an overall effect size

for this selection of studies, six out of the seven primary effect sizes of these interventions

were positive and significant (g = 0.12–0.92, p < .05). This finding uncovered that positive

transfer of learning computer programming on situations that require the application of spatial

skills may exist.

In their review of video gaming, Sala et al. (2018) claimed that “teaching the computer

language Logo to improve pupils’ thinking skills has produced unsatisfactory results” (p. 113)

and referred to two intervention studies. Although this claim was in line with the authors’

main argument, we believe that it stands on shaky legs, given the plethora of Logo

intervention studies that showed positive far transfer effects (e.g., Clements & Sarama, 1997;

Lye & Koh, 2014; Scherer, 2016; Shute et al., 2017). Nevertheless, we agree with their

position that the existing research on far transfer in this area abounds in mixed results—some

studies found significant effects, while others failed to provide evidence for far transfer

(Palumbo, 1990; Salomon & Perkins, 1987). This controversy motivated the present meta-

analysis. Overall, the previous meta-analyses of the transferability of computer programming

suggested possible, positive transfer effects. However, we identified several methodological

and substantive issues which primarily referred to the specification of meta-analytic models,

the differentiation of cognitive skills, and the treatments of control groups.

The Present Meta-Analysis

In this meta-analysis, we synthesize the evidence on the transferability of learning

computer programming to situations that require certain cognitive skills. Along with

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 12

providing an overall transfer effect, we examine the variation and consistency of effects

across studies, types of transfer, and cognitive skills. We believe that the rapid advancements

in technology and the development of visual programming languages (e.g., Scratch) next to

text-based languages (e.g., Java) necessitate an update of the existing research. Besides,

acquiring computational thinking skills through programming has received considerable

attention lately: Programming is introduced into school curricula in several educational

systems—this development is largely based on the claim that learning computer programming

has certain cognitive benefits in other domains and contexts (Grover & Pea, 2013; Lye &

Koh, 2014). We provide some answers to the question whether learning to program helps to

improve cognitive skills and extend the existing research literature on the transfer of skills,

which recently focused on chess and music instruction, working memory training, and video

gaming, by testing the claims of transfer effects for the domain of computer programming.

More specifically, we focus on the following research questions:

1. Overall transfer effects: (a) Does computer programming training improve

performance on cognitive skills tasks, independent of the type of transfer or

cognitive skill? (b) To what extent are these effects moderated by study, sample,

and measurement characteristics?

2. Near transfer effects: (a) Does computer programming training improve

performance on assessments of computer programming skills? (b) To what extent

are these effects moderated by study, sample, and measurement characteristics?

3. Overall far transfer effects: (a) Does computer programming training improve

performance on tasks assessing cognitive skills other than computer programming?

(b) To what extent are these effects moderated by study, sample, and measurement

characteristics?

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 13

4. Far transfer effects by cognitive skills: (a) Does computer programming training

improve performance on tasks assessing reasoning, creative thinking,

metacognition, spatial skills, mathematical skills, literacy, and school achievement

in domains other than mathematical skills and literacy? (b) To what extent do these

far transfer effects differ across the types of cognitive skills and subskills?

First, we examine the overall transfer effects of computer programming training (Research

Question 1a). These effects include benefits for programming skills and skills outside of the

programming domain. The main purposes of providing answers to this research question are

(a) to set a reference for the overall cognitive benefits, and (b) to compare the findings

obtained from our meta-analysis with those reported by Liao and Bright (1991), who treated

“cognitive skills”, although measured by several skills, as a univariate outcome. Although the

overall transfer effect already provides insights into the cognitive benefits of learning

computer programming, we believe that a further differentiation into the skills is needed that

are required in the new situations and contexts. Indeed, the findings of existing meta-analyses

examining transfer effects of cognitive skills trainings warranted further differentiation either

by the type of transfer or by the cognitive skills (e.g., Bediou et al., 2018; Melby-Lervåg et

al., 2016; Sala & Gobet, 2017a).

We add possible moderators to explain variation in the reported effect sizes (Research

Question 1b). The key premise for addressing this question is that effect sizes may vary

within and between studies—moderating variables can therefore explain variation at the study

level or the level of effect sizes. Possible moderators represent the study, sample, and

measurement characteristics, such as the statistical study design, types of control groups,

educational level of study participants, programming tools, types of performance tests, and the

subskills assessed by performance tests.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 14

Second, we quantify the immediate, near transfer effects of learning computer

programming to situations and tasks that require programming skills and explain possible

variation within or between studies by the above-mentioned moderators (Research Questions

2a & 2b). Third, we examine the overall far transfer effects and possible moderators thereof

(Research Questions 3a & 3b). This study of the overall far transfer is based on measures of

skills other than programming and does not differentiate between the different types of

cognitive skills. Finally, we differentiate between different types of cognitive skills to provide

more information on the far transfer effects (Research Questions 4a & 4b). These skills

represent a range of domain-general and domain-specific skills—skills that show a relative

distance to computer programming. To further substantiate the skill- and situation-specificity

of far transfer effects, we compare the resultant effect sizes across cognitive skills. This

comparison also unravels whether certain cognitive skills benefit from computer

programming training more than others.

Method

Literature Search and Initial Screening

To identify the primary literature relevant to this meta-analysis, we performed

searches in literature databases, academic journals, reference lists of existing reviews and

meta-analyses, publication lists of scholars, and the informal academic platform

ResearchGate. The database search included ACM Digital Library, IEEE Xplore Digital

Library, ERIC, PsycINFO, Learn Tech Library, ProQuest Dissertations and Theses Database,

and Google Scholar (the first 100 publications as of January 31, 2017), and focused on

publications that had been published between January 1, 1965 and January 31, 2017. The

databases ACM Digital Library, IEEE Xplore Digital Library, Learn Tech Library,

ResearchGate, and Google Scholar contained both publications in peer-reviewed academic

journals and grey literature. We referred to Adams et al.’s (2017) definition of “grey

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 15

literature”, which included dissertations, conference proceedings, working papers, book

chapters, technical reports, and other references that have not been published in scholarly

journals after peer-review (see also Schmucker et al., 2017).

Whenever Boolean search operators were possible (e.g., ERIC, PsycINFO), the

following search terms were used: (Programming OR coding OR code OR Scratch* OR

Logo* OR Mindstorm* OR computing OR computational thinking) AND (teach* OR learn*

OR educat* OR student* OR intervention OR training) AND Computer* AND (compar* OR

control group* or experimental group* OR treatment). These terms were comprised of three

core elements: the concepts of programming and relevant programming tools (e.g., Scratch

and Logo), the context of teaching, training, and interventions, and the design of relevant

studies (i.e., studies with treatment and control groups). Whenever needed, we adapted them

to the search criteria set by the databases (for details, please refer to the Supplementary

Material A2). All searches were limited to titles, abstracts, and keywords.

Besides the search in databases, we also hand-searched for publications in relevant

academic journals, and reference and citation lists (whenever possible, via the ISI Web of

Knowledge) of existing reviews and meta-analyses on the following topics: teaching and

learning computer programming, the concept of computational thinking, and the effects of

training spatial skills and creativity (see Supplementary Material A2). From the existing meta-

analyses, however, (Liao, 2000; Liao & Bright, 1991), we could only retrieve the studies and

effect sizes reported there to a limited extent, because (a) several publications were no longer

available in a readable format given their publication year (before 2000)—we contacted

twenty authors directly via email or via the messaging tool implemented in ResearchGate;

five authors responded to our queries and sent us their publications; (b) inclusion and

exclusion criteria of the transfer studies differed between the two meta-analyses; (c) pre-

experimental designs were included in these meta-analyses. Finally, we reviewed the formal

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 16

and informal publication lists of scholars in the field (Bright, Clements, Kazakoff, Liao,

Pardamean, Pea, Grover, and Resnick) via Google Scholar and ResearchGate. In August

2017, we received a notification about two additional, empirical studies that had been

published that month (Erol & Kurt, 2017; Psycharis & Kallia, 2017)—these studies entered

our list of possibly relevant publications. Despite our efforts to retrieve unpublished studies

(e.g., in the form of conference presentations or informal communications) from authors and

associations in the field, we did not receive any unpublished material.

Overall, our literature search resulted in 5,193 publications (see Figure 1). After

removing duplicates and screening titles for content fit (i.e., the studies must concern

computer programming), 708 publications were submitted to an initial screening of abstracts.

We read each abstract and examined whether the publication presented a training of computer

programming skills and was of quantitative nature; conceptual papers that presented computer

programming tools and theoretical reviews without any quantitative evaluation were

discarded. This initial screening addressed the criteria of relevance, quantitative data

sufficiency, and the presence of an intervention, and resulted in 440 eligible abstracts. The

results of both the literature search and the initial screening are shown in Figure 1.

Screening and Eligibility Criteria

The extracted publications were further screened based on inclusion and exclusion

criteria (Figure 1). As the current meta-analysis focuses on the transfer effects of learning to

program as results of an intervention—including near transfer effects (i.e., effects on

performance in programming or computational thinking) and far transfer effects (i.e., effects

on performance in related cognitive constructs, such as reasoning skills, creative thinking,

spatial skills, or school achievement)—studies with an experimental or quasi-experimental

design that reported pretest and posttest performance or posttest performance only were

included. In line with existing meta-analyses on transfer effects in other domains (e.g., Melby-

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 17

Lervåg, Redick, & Hulme, 2016; Sala & Gobet, 2016), we excluded studies with pre-

experimental designs (e.g., single-group pretest-posttest designs without any control group).

Overall, studies were included in our meta-analysis if they met the following criteria:

1. Accessibility: Full texts or secondary resources that describe the study in sufficient

detail must have been available.

2. Study design: The study included a training of computer programming skills with an

experimental or a quasi-experimental design and at least one control group (treated or

untreated); correlational, ex-post facto studies, or pre-experimental designs (e.g., one-

group pretest-posttest designs) were excluded.

3. Transfer effects: The effect of learning computer programming could be isolated;

studies reporting the effects of two or more alternative programming trainings without

any non-programming condition were excluded.

4. Reporting of effect sizes: The study reported data that were sufficient to calculate the

effect sizes of learning computer programming.

5. Grade levels: Control and treatment group(s) had to include students of the same

grade level or age group to achieve sample comparability.

6. Performance orientation: The study had to report on at least one cognitive,

performance-based outcome measure, such as measures of computer programming,

reasoning, creative thinking, critical thinking, spatial skills, school achievement, or

similar; studies reporting only behavioral (e.g., number and sequence of actions,

response times) or self-report measures (i.e., measures of competence beliefs,

motivation of volition) were excluded.

7. Educational context: The study samples comprised children or students enrolled in

pre-K to 12, and tertiary education; studies conducted outside of educational settings

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 18

were excluded to avoid further sample heterogeneity (a similar reasoning can be found

in Naragon-Gainey, McMahon, & Chacko, 2017).

8. Non-clinical sample: Studies involving non-clinical samples were included; studies

involving samples of students with specific learning disabilities or clinical conditions

were excluded.

9. Language of reporting: Study results had to be reported in English; studies reporting

results in other languages without any translation into English were excluded.

In total, 20 % of the studies entering the fine screening (i.e., the application of

inclusion and exclusion criteria) were double-screened by the first and the second author. The

overall agreement was high, weighted κ = .97. Disagreement was resolved in a discussion

about whether and why specific inclusion and exclusion criteria might or might not apply

until consent was achieved. The performance of the inclusion and exclusion criteria resulted

in m = 105 studies providing k = 539 effect sizes, as shown in Figure 1 (for more details,

please refer to the Supplementary Material A2).

Effect Size Measures

To examine the transfer effects on learning to program on cognitive skills, we

extracted the relevant statistics from the eligible studies and transformed them into effect

sizes. The resultant effect sizes indicated the degree to which gains in cognitive abilities

existed in the treatment group that received a programming intervention, relative to a control

group that did not. Hedges’ g was reported as an effect size, because it accounted for possible

bias due to differences in sample sizes (Borenstein, Hedges, Higgins, & Rothstein, 2009; Uttal

et al., 2013). We calculated Hedges’ g from pretest-posttest experimental or quasi-

experimental and posttest-only designs using the available statistics (e.g., mean scores,

standard deviations, Cohen’s d, F-values, and t-values). If studies included multiple control

groups, we included the transfer effects obtained from all possible treatment-control group

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 19

comparisons. Supplementary Material A2 details these calculations, and Supplementary

Material A1 documents the resultant effect sizes. Given that only 43.2 % of the reliability

coefficients of the cognitive skills measures were available and considering the current

disagreement about the impact of unreliability corrections on effect size estimations (M. W.-

L. Cheung, 2015), we did not correct the reported effect sizes for the unreliability of the

outcome measures.

Coding of Studies

To understand the role of contextual variables for the transfer effects, we extracted

information about the study design, the content, purpose, and language of programming, the

types of outcome variables, the educational level of participants, the length of the

intervention, the publication year and status. These variables were identified as possible

moderators explaining variation in effect sizes in previous meta-analyses (Liao, 2000; Liao &

Bright, 1991), and defined the contexts in which programming interventions may or may not

succeed (Grover & Pea, 2013; Shute et al., 2017). Considering that transfer effects may vary

within and between studies, possible moderators may operate at the study-level, the level of

effect sizes (or measures), or both levels. Whereas most of the variables listed below served as

study-level characteristics (e.g., average age of students, randomization and matching of

experimental groups), some of them varied within studies and were thus considered effect-

size-level predictors (e.g., statistical study design, treatment of control groups, cognitive

skills). To ensure that the coding scheme was reliable, 25 % of the eligible studies were coded

independently by first and the third author. The overall agreement was 94 %; conflicts were

resolved during a discussion session until consensus was reached. Supplementary Material A1

documents the coded variables. Categorical moderator variables with more than one category

were dummy-coded.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 20

Sample characteristics. To describe the samples involved in the studies, we extracted

information about participants’ average age (in years), the educational level the intervention

was targeted at (i.e., pre-kindergarten, kindergarten, primary school [1-6], secondary school

[7-13], or university/college), and the proportion of female participants in the sample.

Randomization and matching. To supplement the list of study characteristics, we

coded whether individuals or pairs were randomly assigned to the treatment and control

conditions. Studies assigning entire classrooms (as a cluster) to the conditions were coded as

‘non-random’. If authors failed to communicate the degree of randomization, their study was

coded as ‘non-random’, even though authors labelled their design as ‘experimental’. In

addition, we coded the matching of the experimental groups with respect to relevant variables

(e.g., basic cognitive abilities, computer experience, or sample characteristics including

gender, age, and grade level) using the categories ‘matched’ or ‘not matched’.

Type of control group. We coded the type of treatment of the control groups as

‘treated’ or ‘untreated’. Control groups were coded as ‘treated’ (or active) if they received an

alternative training that did not involve programming activities yet was aimed at training a

certain cognitive skill. For example, Kim, Chung, and Yu (2013) examined the effects of

learning programming with the language Scratch on creative thinking. Whereas the treatment

group engaged in the programming instruction, the control group followed regular instruction

that was not targeted at improving creativity. For this study, we coded the control group as

untreated. Hayes and Stewart (2016) examined the effects of learning Scratch programming

on reasoning. Given that the control group engaged in an alternative training of reasoning

skills, we coded it as treated.

Studies may contain multiple outcome variables and control groups that were treated

to support only one of these outcomes (i.e., they were treated considering one outcome

variable, yet untreated considering another outcome variable). The treatment of control groups

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 21

is thus a variable measured at the level of effect sizes. At the same time, we tested whether

this variable may also explain variation between studies and coded the treatment of control

group(s) at the study level as “treated”, “untreated”, or “mixed” as well. Hence, the type of

control group(s) served as both an effect size-level and study-level variable.

Student collaboration. A recently published meta-analysis indicated that learning

computer programming can be more effective in groups than learning it individually

(Umapathy & Ritzhaupt, 2017). Moreover, the transfer of problem-solving strategies may be

more effective when students work in pairs (e.g., Uribe, Klein, & Sullivan, 2003). We

therefore coded whether students collaborated during the intervention as another possible

moderator (0 = individual work, 1 = collaborative work during the intervention).

Study context. We coded the context in which programming interventions were

administered, either as embedded in regular lessons or as extracurricular activities.

Programming language. The programming languages (tools) used during the

interventions were reported and categorized as ‘text-based programming languages’ (e.g.,

Basic, C, and Java) and ‘visual programming languages’ (e.g., Alice, Logo, and Scratch).

Intervention length. The length of interventions was extracted and reported in hours.

In case authors provided the number of school lessons, we assumed an average lesson to last

about 45 minutes. This assumption may not reflect the true intervention length but provided

an approximation of it in most educational systems. The true time distribution may therefore

result in slightly different moderation effects. A lack of reporting the intervention length

resulted in missing values.

Cognitive skills. Cognitive skills measures were grouped according to the constructs

they measured. These constructs comprised broad and narrow categories both of which are

shown in Table 1. Overall, the outcome measures covered programming skills, skills that

cannot be assigned to a single domain (i.e., creative thinking, reasoning, spatial skills, and

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 22

metacognition), and domain-specific skills (i.e., mathematical skills, literacy, and school

achievement in subjects other than mathematics and literacy). Specifically, creative thinking

comprised the skills needed to exhibit creative behavior, including originality, fluency,

flexibility, and elaboration (Hennessy & Amabile, 2010). Creative thinking was mainly

assessed by validated performance tests, such as the Torrance Test of Creative Thinking.

Reasoning skills included not only the skills needed to perform logical (formal) reasoning,

which are considered elements of fluid intelligence and problem solving (McGrew, 2009), but

also critical thinking skills (i.e., informal reasoning); attention, perception, and memory also

fell into the category of intelligence, due to their close relation to the reasoning and

intelligence (Sternberg, 1982). Our classification of these subskills resonated with that

proposed by Sala and Gobet (2018) and Bediou et al. (2018) in their papers on transfer effects

of video gaming. Their classification summarized intelligence, attention, memory, and

perception as general cognitive skills surrounding reasoning skills. By and large, reasoning

skills were assessed by standardized tests of cognitive abilities and critical thinking (e.g.,

Cornell’s Critical Thinking Test; see Table 1). Spatial skills included the skills to memorize

and understand spatial objects or processes, and to perform reasoning (Uttal et al., 2013).

These skills were mostly assessed by standardized tests of the understanding of two- or three-

dimensional objects (Table 1). Metacognition referred to the processes underlying the

monitoring, adaptation, evaluation, and planning of thinking and behavior (Flavell, 1979), and

was mostly assessed in conjunction with certain problem-solving tasks. Despite the

dominance of self-report measures of metacognition, the measures used in the selected studies

were performance-based and comprised tasks that required, for instance, the representation of

a problem, the evaluation of problem situations and strategies, the monitoring of students’

comprehension, and the integration of new information in the presence of old information

(Table 1). Mathematical skills comprised mathematical problem solving, modeling,

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 23

achievement in general (e.g., measured by course grades), and conceptual knowledge (Voss,

Wiley, & Carretero, 1995). Some of the tests reported in primary studies used standardized

mathematics tests, whereas others relied on self-developed assessments (Table 1). Literacy

spanned several knowledge and skills components, including reading, writing, and listening

skills. Most primary studies presented students with writing tasks and evaluated the written

pieces against certain linguistic criteria; these tasks were often accompanied by reading

comprehension tests (Table 1). Finally, school achievement was indicated by performance

measures in domains other than mathematics and literacy. These measures assessed students’

achievement in Earth Sciences, Social Sciences, and Engineering, often measured by national

or teacher-developed achievement tests in these subjects (Table 1). Although mathematical

skills and literacy can also be considered aspects of school achievement, we did not assign

them to this category in order to avoid introducing further heterogeneity which may have

compromised the comparability of the effect sizes within this category. We further extracted

information about how these constructs were measured. This information included the origin

of the tests (i.e., standardized test, performance-based test developed by researchers or

teachers), along with the available reliability coefficients.

Type of transfer. On the basis of the coding of cognitive skills at the level of effect

sizes, we coded whether studies focused on near transfer only (i.e., only programming skills

were measured), far transfer only (i.e., only skills outside of programming were measured), or

near and far transfer at the same time (i.e., programming skills and skills outside of

programming were measured). This variable operated at the study level and allowed us to

examine its possible moderating effects on the overall transfer effect.

Statistical study design. For the included studies, we coded the statistical design

underlying the estimation of effect sizes and the overall study design. Several studies included

multiple outcome measures, for which pretest and posttest scores were available to a different

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 24

extent. Generally, the statistical and the overall (implemented) study designs will agree; yet,

in some cases, they may differ, as the following two examples illustrate: (1) Transfer studies

with one outcome measure: Although authors reported a pretest-posttest control group design

to examine the effects of learning to computer programming on mathematical skills, pretest

and posttest measured entirely different skills in mathematics, for instance, the skills to deal

with variables (pretest) and conceptual understanding of geometric shapes (posttest). Given

the non-equivalence of the pretest and posttest, the statistical design was best represented as a

posttest-only control group design (Carlson & Schmidt, 1999). In such cases, effect sizes were

extracted using the posttest means and standard deviations only. (2) Transfer studies with

multiple outcome measures: Statistical study designs sometimes differed within studies, in

particular when multiple outcomes were measured. For instance, some authors reported both

pretest and posttest scores for one outcome variable, yet only posttest scores for another

outcome variable. Whereas the former represents a pretest-posttest design, the latter

represents a posttest-only design. Hence, statistical study designs are primarily placed at the

level of effect sizes. In addition to treating the study design as an effect size feature, we also

coded the overall study design as a study feature using the categories “pretest-posttest

design”, “posttest-only design”, or “mixed”. Comparable to the types of control groups, this

variable served as both an effect size- and a study-level moderator.

Publication status. To examine the extent to which the reported effect sizes were

moderated by the type of publication, we established publication status as another, possible

moderating variable. Publication status was thus coded as ‘grey’ or ‘published’. In the current,

meta-analytic sample, ‘unpublished’ studies did not exist.

Statistical Analyses

Several studies provided multiple effect sizes, either because they included multiple

treatments or control groups, or they reported effects on multiple outcome variables. The

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 25

reported effect sizes were therefore dependent (Van den Noortgate, López-López, Marín-

Martínez, & Sánchez-Meca, 2013). To account for these dependencies, M. W.-L. Cheung

(2015) suggested using either multivariate meta-analysis, which models the covariance

between multiple effect sizes derived from multiple outcomes measures, or three-level

random-effects modeling, which quantifies the degree of dependence by adding a variance

component at a third level of clustering (Pastor & Lazowski, 2018). The latter is particularly

suitable for situations, in which the degree of dependence or covariance among multiple

outcome variables is unknown (M. W.-L. Cheung, 2014), and returns unbiased estimates of

fixed effects (Moeyaert et al., 2017). Considering this and the observation that very few

primary studies reported covariances or correlations between multiple outcomes in the current

meta-analysis, we decided to account for the clustering of effect sizes in studies by adopting a

three-level random-effects modeling approach. For the ith effect size in the jth study, this

approach decomposes the effect size !"# into the average population effect $%, components

&'"# and &())# with level-specific variances +,-.&'"#/ = 1'' and +,-.&)#/ = 1)', and

residuals 2"# with the known sampling variance +,-.2"#/ = 3"# (M. W.-L. Cheung, 2014):

!"# = $% + &'"# + &)# + 2"# (1)

Model (1) represents a three-level random-effects model which is based on the standard

assumptions of multilevel modeling (see M. W.-L. Cheung, 2014, for details). This model

quantifies sampling variability (level 1), within-study variability (level 2), and between-study

variability (level 3). To establish which variance components (i.e., within and between

studies) are statistically significant, we compared four models against each other, using

likelihood-ratio tests and information criteria: Model 1 represented a random-effects, three-

level model with within- and between-study variances (see equation [1]). Model 2 was a

random-effects model with only between-study variance, and Model 3 was a random-effects

model assuming only variation between effect sizes. Finally, Model 4 represented a fixed-

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 26

effects model without any variance component. To quantify the heterogeneity of effect sizes

at both levels, we estimated the 5' statistics based on the level-2 and level-3 variance

estimates as follows (Cheung, 2015):

5'' = 100% ∙ :;<<
:;<<=:;><=?@

 and 5)' = 100% ∙ :;><
:;<<=:;><=?@

 (3)

In equation (3), 3@ represents the typical within-study sampling variance proposed by Higgins

and Thompson (2002).

If statistically significant variation within or between studies exists, the random-effects

Models 1-3 can be extended to mixed-effects model by introducing covariates (i.e., possible

moderator variables) at the level of effect sizes and studies. Under the standard assumptions

of three-level regression, the mixed-effects model with level-2 and level-3 variances and a

covariate at the level of effect sizes A"# is:

!"# = $% + $BA"# + &'"# + &)# + 2"# (2)

The variance explained by a covariate at the level of effect sizes is estimated by the reduction

of level-2 variance when comparing models (1) and (2). We specified all models in the R

packages ‘metafor’ (Viechtbauer, 2017) and ‘metaSEM’ (M. W.-L. Cheung, 2018) using

restricted maximum likelihood estimation. Supplementary Material A3 contains the R sample

code.

Publication Bias and Sensitivity Analysis

To test the robustness of the obtained transfer effects, we conducted several analyses

of publication bias: First, we examined the funnel plot and performed trim-and-fill-analyses

(Duval & Tweedie, 2000). Second, we compared the effect sizes obtained from published

studies and grey literature (Schmucker et al., 2017). Third, we examined the p-curve that

resulted from the statistics underlying the transfer effect sizes (Simonsohn, Nelson, &

Simmons, 2014). If studies had evidential value, the p-curve should have been right-skewed; a

left-skewed curve would indicate publication bias (Melby-Lervåg et al., 2016). Fourth, we

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 27

performed a fail-safe N analysis on the basis of Rosenberg’s weighted procedure (Rosenberg,

2005). In contrast to other fail-safe N procedures (e.g., Rosenthal’s and Orwin’s procedures),

Rosenberg proposed a weighted approach, which is applicable to both fixed- and random-

effects models in meta-analysis and might represent the number of unpublished studies better

than the alternative approaches. Fifth, we applied Vevea’s and Hedges’ (1995) weight

function procedure that assumes a dependency between the p-value in a study and the

probability of publication (linked via a weight function). All approaches to publication bias

were performed in the R packages ‘metafor’ (Viechtbauer, 2017), ‘weightr’ (Coburn &

Vevea, 2017), and the ‘P-curve Online App’ (Simonsohn, Nelson, & Simmons, 2017).

We tested the sensitivity of our findings to several factors, including the estimation

method, the presence of influential cases, the handling of missing data in moderators, and the

different assumptions on the variance components in the main model. For instance, we

compared the transfer effects and the existence of possible variation within and between

studies between restricted maximum likelihood (REML) and maximum likelihood (ML)

estimation. Existing simulation studies indicate that, although both methods may not differ in

the estimation of intercepts (i.e., overall effect sizes; Snijders & Bosker, 2012), REML creates

less biased between-study variance estimates of random-effects models than ML does

(Veroniki et al., 2016). M. W.-L. Cheung (2013) therefore argued for the use of REML in

multilevel situations yet suggests comparing the variance components obtained from both

estimation methods for validation purposes (see also M. W.-L. Cheung, 2014). Furthermore,

the dataset underlying our meta-analysis may contain influential effect sizes. We therefore

compared the results of our meta-analysis with and without influential effect sizes. We

identified influential effect sizes using Viechtbauer’s and Cheung’s (2010) diagnostics based

on random-effects models in the R package ‘metafor’. These diagnostics included student

residuals, Cook’s distances, and other leave-one-out deletion measures.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 28

Results

Description of Studies

Table 2 summarizes the distribution of the study design, sample, and publication

characteristics among the m = 105 studies and k = 539 effect sizes. Most studies reported

effect sizes based on pretest-posttest control group designs and random group assignment but

did not match the experimental groups—hence, they were quasi-experimental. Most studies

targeted far transfer effects only (87.6 %), and about 70 % of the effect sizes were based on

untreated control groups. Interventions were mostly conducted during regular school lessons.

Besides these design features, studies primarily used visual rather than text-based

programming tools in their interventions. Study participants used these tools to design

computer games, maneuver robots, or engage in pure programming activities. Control groups,

however, did not use programming tools, but attended lectures or other forms of instruction

(see Supplementary Material A2). Standardized and unstandardized test were administered to

almost the same extent. These tests measured a variety of cognitive skills, with a clear focus

on reasoning, mathematical, and creative thinking skills. Overall, the sample of participants

was comprised of mainly primary and secondary school students in Asia and North America.

The overall sample contained N = 9,139 participants of the primary studies (treatment groups:

NT = 4,544; control groups: NC = 4,595), with an average sample size of 87 (SD = 72,

Mdn = 66, range = 14–416). Considering the central tendencies of sample sizes, treatment and

control groups were balanced (treatment groups: M = 43, SD = 37, Mdn = 30; control groups:

M = 44, SD = 43, Mdn = 29). On average, interventions lasted for 25 hours and ranged

between 2 and 120 hours (SD = 20.9, Mdn = 20 hours). Of the study participants, 49.1 % were

female. Most publications describing the study results dated back to the 1980s and 1990s,

followed by studies published in the 2010s.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 29

Publication bias

Before quantifying the overall transfer effects, we examined the degree of publication

bias in the sample of primary studies. The funnel plot indicated some degree of asymmetry

(see Figure 2a)—this observation was supported by Egger’s regression test, t(537) = 4.10,

p < .001. Trim-and-fill analysis resulted in an overall transfer effect size of g = 0.43,

95 % CI = [0.37, 0.50], without any additional studies to be filled left of the mean.

Rosenberg’s fail-safe N suggested that 77,765 additional effect sizes would be necessary to

turn the overall transfer effect size into insignificant (with p > .01). Finally, p-curve analyses

indicated that observed p-values had evidential value, z = -38.9, p < .0001 (continuous test for

a right-skewed curve; Simonsohn et al., 2014), and that the p-curve was right-skewed (see

Figure 2b). Vevea’s and Hedges’ (1995) weight function model with a selection function

based on p-values with cut-off points of 0.05 and 1 resulted in an adjusted overall effect size

of g = 0.63, 95 % CI = [0.52, 0.74] that was based on random effects. The difference between

this weighted model and a model containing constant weights (i.e., no publication bias) was

significant, χ2(1) = 20.4, p < .001. Hence, the publication of effect sizes could depend on the

reported p-value, because the model adjusted for publication bias fits better than the

unadjusted model (for more details, please refer to Vevea & Hedges, 1995). Taken together,

these findings suggest the presence of some publication bias and small-study effects (Egger’s

test) in the present data. At the same time, p-curve analysis did not uncover the presence of p-

hacking, and the fail-safe N indicated that it is unlikely that the key results obtained from the

main and moderation models are mainly due to publication bias.

Overall Transfer Effects

To aggregate the transfer effects of learning computer programming on cognitive

skills, including programming skills and skills outside of the programming domain, we

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 30

established a main (baseline) model, which formed the basis for the subsequent moderator

analyses of the overall transfer effects.

Main model (Research Question 1a). To identify the main model, we performed a

sequence of modeling steps: First, a random-effects three-level model (Model 1) resulted in

positive and moderate transfer effect, g = 0.49 (m = 105, k = 539, 95 % CI = [0.37, 0.61], z

= 8.1, p < .001; Model fit: -2LL = 1127.8, df = 3, AIC = 1133.8, BIC = 1146.7). This effect

was accompanied by significant heterogeneity (Q[538] = 2985.2, p < .001), which also

surfaced in variation of the effect size within studies (1'' = 0.204, 95 % CI = [0.164, 0.252],

5'' = 36.7 %) and between studies (1)' = 0.281, 95 % CI = [0.189, 0.415], 5'' = 50.7 %). The

corresponding profile likelihood plots peaked at both variance estimates, and the log-

likelihood decreased for higher values of these variances—thus, both variance components

were identifiable (see Supplementary Material A2, Figure S1). The intraclass correlations of

the true effects were 0.42 (level 2) and 0.58 (level 3), indicating substantial variation within

and across studies.

Second, we specified a model with constrained level-2 variance (1'' = 0), but freely

estimated level-3 variance (Model 2). This model showed the same transfer effect size as the

three-level model (g = 0.49, 95 % CI = [0.38, 0.61]), along with significant level-3 variance,

1)' = 0.328, 95 % CI = [0.238, 0.458], 5'' = 82.4 % (Model fit: -2LL = 1589.0, df = 2,

AIC = 1593.0, BIC = 1601.6). In comparison to Model 1, this model degraded model fit

significantly, χ2(1) = 461.2, p < .001.

The third model assumed variation at level 2, yet not at level 3 (1)' = 0), thus

representing a standard random-effects model (Model 3). This model revealed a positive and

moderate effect size, which was slightly smaller than that obtained from the three-level model

(g = 0.43, m = 105, k = 539, 95 % CI = [0.37, 0.49], z = 13.8, p < .001; Model fit: -

2LL = 1266.5, df = 2, AIC = 1270.5, BIC = 1279.1), with significant between-study variation

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 31

(1'' = 0.415, 95 % CI = [0.352, 0.490], 5'' = 85.6 %). Introducing the constraint of zero level-

3 variance degraded the model fit significantly, as the results of a likelihood-ratio test

comparing Models 1 and 3 indicated, χ2(1) = 138.7, p < .001.

The fourth model constrained both level-2 and level-3 variances to zero (1'' = 0,

1)' = 0), assuming fixed effects (Model 4). The resultant overall transfer effect amounted to

g = 0.35 (m = 105, k = 539, 95 % CI = [0.33, 0.37], z = 31.1, p < .001; Model fit: -

2LL = 2740.0, df = 1, AIC = 2742.0, BIC = 2746.3). The three-level random-effects model,

however, fitted the data significantly better than this model, χ2(2) = 1612.2, p < .001.

Overall, this sequence of model specifications and comparisons indicated significant

level-2 and level-3 variance of the overall transfer effect and the sensitivity of the overall

effect size to these variance components. It also showed that the three-level random-effects

model represented the data best, g = 0.49, m = 105, k = 539, 95 % CI = [0.37, 0.61].

Moderator analysis (Research Question 1b). Model 1 formed the basis for further

moderator analyses. Table 3 shows the results of these analyses for the categorical

moderators. Significantly higher effects occurred for published literature (g = 0.60,

95 % CI = [0.45, 0.75]) than for grey literature (g = 0.34, 95 % CI = [0.15, 0.52];

QM [1] = 4.67, p = .03). Besides the publication status, only the type of treatment that control

groups received (i.e., treated vs. untreated) significantly explained level-2 variance,

QM (1) = 40.12, p < .001, C'' = 16.7 %. More specifically, transfer effect sizes were

significantly lower for studies including treated control groups (g = 0.16) than for studies

including untreated control groups (g = 0.65). Concerning the z-transformed, continuous

moderators at level 3, neither publication year (B = 0.09, SE = 0.06, QM [1] = 2.36, p = .12,

C)' = 0.0 %), students’ average age (B = -0.07, SE = 0.07, QM [1] = 0.86, p = .35, C)' = 3.6 %),

the proportion of female students in the study samples (B = -0.07, SE = 0.07, QM [1] = 0.86,

p = .35, C)' = 1.1 %), nor the intervention length (B = 0.00, SE = 0.06, QM [1] = 0.00, p = .98,

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 32

C)' = 0.0 %) affected the overall transfer effect, thus leaving large proportions of level-2 and

level-3 variances unexplained.

Sensitivity analyses. The variance components of the overall transfer effect, obtained

from REML, differed only marginally from the ML variances (ML level-2 variance:

1'' = 0.203, 95 % CI = [0.160, 0.247], 5'' = 37.0 %; ML level-3 variance: 1)' = 0.277,

95 % CI = [0.169, 0.385], 5'' = 50.3 %; see Supplementary Material A2, Table S1). Some

moderator variables exhibited missing data. Hence, we compared the variance explanations of

effect sizes between the maximum likelihood and the full-information maximum likelihood

(FIML) approaches. The FIML approach handles missing data within the analysis model by

using all observed effect sizes and study characteristics to compensate the loss if information

due to missing values (Little et al., 2014) and is implemented in the R package ‘metaSEM’

(‘meta3X()’ function; M. W.-L. Cheung, 2018). Overall, the differences in variance

explanations between FIML and ML, and FIML and REML were only marginal (see

Supplementary Material A2, Table S2).

The influential cases diagnostics flagged ten influential effect sizes that were obtained

from five studies (see Supplementary Material A2, Figure S2). These effect sizes ranged

between g = 2.10 and g = 8.63 (Mdn = 3.31), with an average of g = 3.99 (SD = 1.99). The

studies exhibiting these effects all contained primary school students, used visual

programming tools, and examined transfer effects on cognitive skills outside of programming;

all other sample and study characteristics differed. After removing these effect sizes, the

remaining m = 103 studies comprising k = 529 effect sizes were submitted to the three-level

meta-analysis, following the same procedure as for the full data set. Model 1 fitted the data

based and revealed a positive, significant, and moderate overall transfer effect size of

g = 0.41, 95 % CI = [0.32, 0.50], which was slightly lower than the original effect size (see

Supplementary Material A2, Table S3). The moderator analyses supported the finding that

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 33

studies comprising treated control groups exhibited significantly smaller transfer effects than

studies with untreated control groups (see Supplementary Material A2, Table S4). The

continuous moderation effects did not change after excluding influential cases (see

Supplementary Material A2, Table S5). Nevertheless, two findings contrasted previous

moderator analyses with the full data set: First, the difference between published literature

and grey literature diminished after removing influential cases, suggesting a possible

reduction of publication bias in the data. Indeed, the funnel plot indicated improved graphical

symmetry, and the p-curve did not provide evidence for further publication bias (see

Supplementary Material A2, Figure S3). Second, studies administering standardized tests

showed a significantly lower transfer effect size (g = 0.33) than studies administering

unstandardized tests (g = 0.49; QM [1] = 4.56, p = .03, C)' = 7.8 %). Overall, the sensitivity

analyses showed marginal differences in the overall transfer effects, their variance

components, and possible moderation effects between the conditions—substantive causes for

differences could not be identified.

Near and Far Transfer Effects

Taking a second step in our meta-analysis, we analyzed the transfer effects for near

transfer (i.e., effects on programming skills) and far transfer (i.e., effects on cognitive skills

outside programming). To allow for possible differences in (a) the selection of a main model,

(b) the within- and between-study variances, and (c) the moderation effects, we conducted

two separate meta-analyses, following the same procedure as for the overall transfer.

Main models (Research Questions 2a & 3a). Comparisons between models with

different variance constraints identified a random-effects model with between-study variation

of effect sizes (Model 2) as the best-fitting main model for near transfer effects (Table 4;

please find the forest plot in the Supplementary Material A1); for far transfer effects, the

random-effects three-level model (Model 1) described the data best (Table 4), indicating

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 34

significant variance within and between studies. The overall effect size for near transfer was

high (g = 0.75, m = 13, k = 19, 95 % CI = [0.39, 1.11], z = 4.1, p < .001), and showed

substantial heterogeneity across studies (5)' = 85.5 %). In contrast, the overall far transfer

effect size was lower (g = 0.47, m = 102, k = 520, 95 % CI = [0.35, 0.59], z = 7.8, p < .001),

and showed heterogeneity within (5'' = 37.1 %) and between studies (5)' = 50.0 %) with

intraclass correlations of 0.43 and 0.57, respectively. For both types of transfer, the profile

likelihood plots peaked at the estimated variances, testifying to the identification of both

variances (see Supplementary Material A2, Figures S4 and S5). Overall, the selection of main

models suggested positive and significant near and far transfer effects.

Moderator analyses (Research Questions 2b & 3b). The moderator effects differed

between near and far transfer (see Tables 5 and 6): Whereas neither publication status nor the

treatment of control groups showed significant moderation for near transfer, far transfer effect

sizes were significantly lower for treated control groups (g = 0.15) than for untreated control

groups (g = 0.64) at the level of effect sizes, and significantly higher for published studies

(g = 0.58) than for grey literature (g = 0.43). Studies with random group assignment

(g = 0.29) showed lower near transfer effects than for those without (g = 0.95). None of the

continuous study and sample characteristics moderated the two transfer effects (Table 7).

Notably, the confidence intervals accompanying near transfer effects were large, due to the

limited number of studies addressing this type of transfer. Hence, the moderation effects of

near transfer must be treated with caution.

Publication bias. As noted earlier, publication status did not explain variance in near

transfer but in far transfer effects, indicating some bias toward published studies in the latter.

Moreover, the funnel plots for near and far transfer confirmed this tendency, as they showed

some skewness only for far transfer (see Supplementary Material A2, Figure S6). Trim-and-

fill analyses suggested adding two more effect sizes for near, yet no further effects for far

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 35

transfer; for both, fail-safe Ns were large in comparison to the available number of effect sizes

(see Supplementary Material A2, Table S10). Overall, some publication bias may exist in the

far transfer effects.

Sensitivity analyses. To further substantiate the findings surrounding near and

transfer effects, we replicated the sensitivity analyses conducted for the overall transfer effect.

Tables S6 to S9 in the Supplementary Material A2 report the results of these analyses.

Overall, the selection of the main models underlying near and far transfer effects was neither

affected by the method of estimation (REML vs. ML) nor the exclusion of influential cases

for the far transfer data set (Tables S6 and S7). The far transfer effect decreased slightly after

removing influential cases, g = 0.39. Notably, variances decreased after removing influential

cases. Moderation effects of far transfer did not differ across sensitivity conditions (Tables S8

and S9). After removing influential cases, the moderation by publication status disappeared

and the effect of test type became significant for far transfer; indicators of publication bias

were not affected. Taken together, sensitivity analyses provided evidence for the robustness of

our findings yet indicated some degree of sensitivity to influential cases.

Far Transfer Effects by Cognitive Skills and Subskills

Finally, we aimed at providing a more fine-grained view on the far transfer effects.

Our initial analyses revealed considerable variation in far transfer effect sizes—variation that

might be explained by the diversity of cognitive skills assessed in the primary studies.

Consequently, we addressed this diversity by conducting separate meta-analyses for each

cognitive skill. These meta-analyses included the selection of a main model, the quantification

of variance components, and the comparisons of effects between cognitive skills measures.

Main models (Research Question 4a). For the meta-analytic data sets focusing on

reasoning, creative thinking, spatial, and mathematical skills, three-level random-effects

models represented the data best (Model 1); for metacognitive skills, however, only

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 36

significant between-study variance existed (Model 2; see Table 8). Fixed-effects models

represented the data for studies assessing literacy and school achievement, due to the small

number of available effect sizes showing insignificant within- and between-study variation.

Table S11 in the Supplementary Material A2 details the selection of main models. Moreover,

Figures S6 to S12 show the profile likelihood plots for each variance component in the meta-

analyses; these plots indicated that all variance components were identified.

Overall, the largest effects appeared for creative thinking (g = 0.73, 95 % CI = [0.27,

1.20]), followed by mathematical skills (g = 0.57, 95 % CI = [0.34, 0.80]). We found positive

and moderate effects for metacognitive skills (g = 0.44, 95 % CI = [0.01, 0.88]), reasoning

skills (g = 0.37, 95 % CI = [0.23, 0.52]), spatial skills (g = 0.37, 95 % CI = [0.08, 0.67]), and

school achievement (g = 0.28, 95 % CI = [0.14, 0.42]), all of which were statistically

significant (p < .05). Nevertheless, we could not find support for positive transfer effects on

literacy (g = -0.02, 95 % CI = [-0.12, 0.08]). The forest plots for all far transfer effects are

shown in the Supplementary Material A1.

Effect size differences across cognitive skills and subskills (Research Question

4b). To test whether far transfer effects differed significantly across cognitive skills, we

extended the three-level random-effects models describing far transfer by an additional level,

that is, the level of skills. This extended, four-level model fitted the data significantly better

than the three-level model (Model fit: -2LL = 1073.6, df = 4, AIC = 1081.7, BIC = 1098.7;

Model comparison: χ2(1) = 13.5, p < .001), suggesting that the between-skills variance of

1D' = 0.045 (95 % CI = [0.009, 0.227], 5D' = 7.8 %, ICC = .089) was significant. Nevertheless,

the post-hoc tests of effect size differences indicated only few significant differences (see

Supplementary Material A2, Table S24). Overall, far transfer effects varied across cognitive

skills. However, although the absolute values of effects (i.e., fixed effects) may suggest a

hierarchy of transfer effects on cognitive skills, not all effect sizes differed significantly.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 37

We further tested whether the types of subskills or the assessment mode (i.e., verbal

vs. non-verbal) explained variation in transfer effects (see Table 9). Indeed, except for

mathematical skills, the differentiation into certain subskills moderated the transfer effects on

reasoning, creative thinking, and spatial skills significantly, explaining up to 66 % of

variance. Notably, problem solving (g = 0.47), originality (g = 1.28), and spatial memory

(g = 1.25) benefited the most from learning computer programming. The type of assessment,

however, did not show any moderation effect. Tables S12 to S16 in Supplementary Material

A2 give a more detailed account of the effects of additional moderator variables.

Publication bias. The finding that far transfer effects were moderated by publication

status for selected cognitive skills indicated the existence of some publication bias. Funnel

plots, as shown in Figures S13 to S19 (Supplementary Material A2), further uncovered some

skewness in the plots, especially for the subsets of studies with few effect sizes. Nevertheless,

the trim-and-fill analyses did not show substantial deviations of Hedges’ g from the original

effect sizes after adding more effects, except for metacognition (see Supplementary Material

A2, Table S23). The fail-safe Ns were large in comparison to the number of available effect

sizes, except for literacy and school achievement.

Sensitivity analyses. We further found that excluding influential cases reduced the

variances, especially the between-study variance; however, the decisions for main models

remained, except in one case (i.e., data on spatial skills no longer showed between-study

variation). Tables S17 and S18 (Supplementary Material A2) detail the results underlying

these observations. The main reason for the substantial variance reduction lies in the fact that

large effect sizes (i.e., those of influential cases) are more influential when sample sizes are

small. Nevertheless, apart from only few deviations, the effects of moderating variables

remained in most sensitivity conditions (see Supplementary Material A2, Tables S19 to S22).

Notably, transfer effects decreased after removing influential cases for reasoning (g = 0.32),

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 38

creative thinking (g = 0.52), and spatial skills (g = 0.27), yet remained statistically significant.

The transfer effect on school achievement, however, became insignificant (g = 0.22). These

findings supported the overall robustness of the results yet point to some sensitivity due to the

large effects of influential cases in small meta-analytic samples.

Discussion

In this meta-analysis, we synthesized the existing research that focused on the

transferability of learning computer programming to cognitive skills. Adopting a three-level

random-effects, meta-analytic approach, we identified a positive, overall transfer effect.

Further differentiating between near and far transfer revealed positive effects for both types of

transfer. Of the cognitive skills examined for far transfer, the transfer effects were large for

creative thinking, mathematical skills, and reasoning—other cognitive skills benefited less

(e.g., school achievement, literacy). Only some of these findings were sensitive to the removal

of influential cases; all of them were robust across different estimation methods and

treatments of missing covariates. The status of control group treatment and publication

moderated most of the transfer effects. Table 10 summarizes these key findings.

Overall Transfer Effects of Computer Programming

The overall transfer effect size of g = 0.49 was comparable to that reported by Liao

and Bright (1991) in their meta-analysis (d = 0.41, p < .05), although we were able to include

more studies and effect sizes and although we excluded pre-experimental study designs

without control groups. Despite the differences between our meta-analysis and theirs, the

overall finding—that is, the existence of positive transfer of moderate effect sizes—could be

replicated. However, the grand mean of transfer effects Liao (2000) reported in the update of

the preceding study (d = 0.76) was considerably larger than the one we identified. One

possible explanation for this deviation might refer to the small sample of primary studies Liao

(2000) extracted from existing research (m = 22 studies, k = 86 effects).

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 39

Overall, the positive transfer effect suggested that learning computer programming has

certain cognitive benefits. This finding may have at least two explanations: First, the cognitive

skills assessed in the primary studies share conceptual commonalities with programming

skills. These commonalities may comprise skills that are relevant for both, programming and

other skills—hence, learning computer programming possibly helps developing other skills

(Liao & Bright, 1991; Shute et al., 2017). Second, the measures used to assess cognitive skills

were aligned with what the interventions focused on. This alignment puts the overall effects in

a different perspective: they may be considered immediate training effects rather than transfer

effects (Melby-Lervåg et al., 2016). However, the second explanation seems unlikely to us,

because (a) cognitive skills measures and the programming skills taught during the

interventions differed (e.g., programming intervention with a standardized test of creativity

outside the programming domain); (b) the overall effects were only moderate, whereas direct

effects of aligned measures in programming tended to be larger in a previous meta-analysis

that synthesized direct training effects (g = 0.64, p < .05; Umapathy & Ritzhaupt, 2017).

Clearly, differentiating between the types of transfer and cognitive skills could shed further

light on these explanations.

The overall effect size we found in our meta-analysis was comparable to those

obtained from similar transfer effects studies. For instance, examining the effects of chess

instruction on several cognitive skills, Sala and Gobet (2016) identified a moderate, overall

effect of g = 0.34 (p < .05) for a sample of 24 studies and 40 effect sizes. Bediou et al. (2018)

synthesized 90 effect sizes that were derived from 20 intervention studies in the domain of

video gaming and found a moderate overall effect, g = 0.34, p < .05. Focusing on the same

domain, Sala et al. (2018) meta-analyzed experimental and quasi-experimental interventions;

aggregating the effect sizes obtained from these interventions resulted in a range of transfer

effects from g = -0.04 to g = 0.41. Examining the transfer effects of working memory training,

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 40

Melby-Lervåg et al. (2016) found an even broader range of effects from g = 0.01 to g = 1.88

for a variety of cognitive skills measures. Although the list of similar transfer effects studies

can be extended, this selection of studies shows that (a) the overall transfer effect size of

learning computer programming (g = 0.49) fell into the range of effects reported for other

domains; and (b) the effects may vary considerably across cognitive skills. However, the

effects decreased whenever control groups were engaged in alternative treatments—a finding

testifying that study designs matter to transfer effects.

Does Far Transfer of Programming Skills Exist?

Differentiating between near and far transfer effects revealed strong effects for near

transfer (g = 0.75) and moderate effects for far transfer (g = 0.47). The former suggests that

learning computer programming is effective in teaching programming skills. This finding

supported Lye’s and Koh’s (2014) claim that programming instruction can aid the acquisition

of programming skills as elements of computational thinking, a concept that goes even

beyond programming. Furthermore, the reported effect size of near transfer was comparable

to those reported in a meta-analysis of the effects of pair programming (g = 0.41–0.64, p <

.05; Umapathy & Ritzhaupt, 2017), and indicated the success of direct transfer, that is,

transfer to the very skills that were trained during the interventions.

The finding that far transfer effect existed suggests that learning computer

programming can support the acquisition of other cognitive skills. The overall claim that

programming aids other forms of thinking skills can therefore be substantiated. We believe

that programming skills, as key elements of computational thinking, comprise skillsets that

are also needed in other domains. In fact, the claims surrounding the transferability of

computer programming are largely based on this argumentation: For instance, Shute et al.

(2017) conceptualized programming activities as forms of problem solving. Ambrósio,

Pereira Júnior, and Georges (2015) argued that programming skills require fluid intelligence

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 41

and other forms or reasoning—this argument has later been evidenced by a study conducted

by Román-González et al. (2017). These findings exemplify the commonalities programming

skills and other cognitive skills share.

We differentiated transfer effects between cognitive skills and the results indicated the

differential effectiveness of learning computer programming. Far transfer effects were

positive and significant for skills that share certain subskills with programming. For instance,

the largest transfer effects occurred for creative thinking skills. Existing frameworks outlining

what creative thinking skills entail contain skills that are also relevant for the creation of

computer code (Scherer, 2016). In fact, Grover and Pea (2013) considered programming “a

creative process that produces computational artefacts” (p. 39). This process requires

translating problems into computational models to find original solutions (Clements, 1995;

Ma, 2006). Indeed, we found that transfer effects were larger for the originality dimension of

creative thinking than for the other dimensions. Reviewing studies on the malleability of

creativity (g = 0.68–0.69, p < .05; Ma, 2009; Scott, Leritz, & Mumford, 2004), the effects we

extracted from programming interventions were comparable in size (g = 0.73). In conclusion,

it seems that learning computer programming could be as effective as alternative approaches

to enhancing creativity.

Shute et al. (2017) reviewed the similarities and differences between programming as

a part of computational thinking and mathematical thinking and concluded that skills such as

problem solving and modeling are involved in both. More specifically, both programming and

mathematical modeling require the abstraction of real-world problems, the formulation as

computational models, the application of strategies and algorithms to solve them, and the

interpretation of a solution. These shared subskills may explain the strong and positive

transfer effects on mathematical skills. Another explanation refers to the tasks used to assess

mathematical thinking: in several studies, the understanding of geometric concepts and shapes

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 42

was assessed following an intervention that used the Logo programming language with

geometric objects. In this sense, the transfer of skills needed to program geometric objects to

mathematical skills seems obvious (Clements & Sarama, 1997). Yet another explanation is

that mathematically skilled students are more likely to engage in programming activities and

therefore excel more than those students who may not be as mathematically skilled as they are

(Pea & Kurland, 1984). In any case, the transfer effects on mathematical skills (g = 0.57) were

larger than those found in similar meta-analyses that focused on the transfer effects of chess

instruction (g = 0.38, p < .05; Sala & Gobet, 2016), technology-based instruction (d = 0.28, p

< .05; Li & Ma, 2010), music education (d = 0.17, p < .05; Sala & Gobet, 2017b), or working

memory training (g = 0.06–0.12; Melby-Lervåg et al., 2016). The effect size was comparable

to that of direct training studies (e.g., d = 0.55–0.58, p < .05; Jacobse & Harskamp, 2011;

Stockard, Wood, Coughlin, & Khoury, 2018). Thus, learning computer programming might

be an effective approach to developing students’ mathematical skills.

Both metacognition and reasoning are involved in programming activities: whereas

the former comprises activities such as debugging and evaluating solution strategies

(McCauley et al., 2008), the latter involves algorithmic and logical thinking as well as formal

and informal reasoning (Shute et al., 2017; Yadav et al., 2017). Considering these activities

and the existing evidence on the positive effects of teaching metacognitive strategies (e.g.,

self-monitoring) on the transfer of skills (Bransford & Schwartz, 1999; Chen & Klahr, 2008),

transfer effects were expected; however, they were not as high as those of creativity and

mathematical skills, possibly due to a larger degree of domain-generality of reasoning and

metacognition (Greiff et al., 2014). The effects reported in our study (metacognition: g = 0.44,

p < .05; reasoning: g = 0.37, p < .05) were comparable to those reported in other meta-

analyses (e.g., chess instruction: g = 0.33, p < .05; Sala & Gobet, 2016; programming:

d = 0.39, Liao, 2000).

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 43

The finding that spatial skills benefit from learning computer programming may be

explained by the focus of several transfer studies on geometry objects and the understanding

of movements (Clements & Sarama, 1997). The resultant transfer effect (g = 0.37) falls in the

range of transfer studies using video gaming (g = 0.20–0.45, Bediou et al., 2018; Sala et al.,

2018) and working memory training (g = 0.28–0.51; Melby-Lervåg et al., 2016)—it is,

however, smaller than the average effect of direct training studies of spatial skills (g = 0.47, p

< .05; Uttal et al., 2013).

School achievement, primarily in natural and social sciences, was aided the least by

programming interventions (g = 0.28). Programming interventions did not show any transfer

effects on literacy. A possible explanation for the former finding may lie in the fact that

school achievement was assessed by distal measures, such as grades or subject-specific

tests—measures that tap subject-specific knowledge next to generic skills. We also observed

that literacy was mainly measured by reading comprehension and writing skills—skills that

overlap only marginally with programming. Sala and Gobet (2017b) obtained a similar result

while studying effects of music education on literacy (d = -0.07). We emphasize that the

number of studies used to study effects on literacy was small, and the interventions presented

therein may not have been tailored to foster literacy through programming. Despite the

existing enthusiasm related to the possible transferability of computer programming to

situations that require literacy (Hutchison, Nadolny, & Estapa, 2016), our meta-analysis does

not provide support for it.

Overall, the positive effects of far transfer were not homogeneous across cognitive

skills and thus necessitated further differentiation. Nevertheless, both the analyses of the full

data set and the analyses in the sensitivity conditions did not suggest a stringent hierarchy of

far transfer effects, in which creative thinking, mathematical skills, and metacognition benefit

the most. Not all differences in effect sizes between cognitive skills were significant, and

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 44

smaller effects occurred after excluding influential cases so that the “order” of effects

changed. These results were mainly due to large uncertainties and small meta-analytic

samples.

Despite the increasing attention computer programming has received recently (Grover

& Pea, 2013), programming skills do not transfer equally to different skills—a finding that

Sala and Gobet (2017a) supported in other domains. The findings of our meta-analysis may

support a similar reasoning: the more distinct the situations students are invited to transfer

their skills to are from computer programming the more challenging the far transfer is.

However, we notice that this evidence cannot be interpreted causally—alternative

explanations for the existence of far transfer exist. For instance, besides the possible, common

elements between what is learned during programming interventions and what tasks assessing

metacognition require as causes for positive far transfer on metacognition, the programming

interventions may have indeed improved students’ metacognitive skills, such as the evaluation

and monitoring of problem solving processes (Clements, 1986b). This interpretation assumes

that learning computer programming may stimulate the development of cognitive skills that

are required to solve complex problems in other contexts and domains. In any case, the

positive effect sizes at least suggest that learning programming “does not do harm” to other

cognitive skills. Denning’s (2017) recent claim that no evidence existed for the transfer of

programming cannot be substantiated.

Sensitivity of Findings and Effects of Moderators

Overall, despite marginal differences in the reported effect sizes, their variance

components, and the effects of moderators, the sensitivity analyses confirmed the findings we

presented in our meta-analysis. Nevertheless, further differentiating between the two types of

transfer and cognitive skills, as it decreases the number of available effect sizes for each of the

separate meta-analyses, increased the impact of some sensitivity conditions. For instance, the

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 45

impact of excluding influential effect sizes for creativity decreased the transfer effect size

substantially. This observation is primarily an effect of smaller meta-analytic samples; yet,

secondary, more substantive reasons could not be identified. Finally, the sensitivity analyses

revealed the robustness of reported effects against estimation procedures and the treatment of

missing covariates.

Considering our moderator analyses, the treatment of control groups moderated the

overall and far transfer effect, with larger effect sizes for untreated controls. As we have

mentioned earlier, it is critical to review the activities the control groups are engaged in to

obtain a more differentiated view on transfer effects. The fact that transfer effects were

smaller in studies with treated control groups shows that alternative trainings exist that might

be equally effective as learning computer programming (Hayes & Stewart, 2016; Salomon &

Perkins, 1987).

Similar to the treatment of control groups, publication status moderated the overall and

far transfer effects, with larger effects for published studies. This finding replicates the

significant moderation effects in previous meta-analyses (Liao, 2000; Liao & Bright, 1991),

and may indicate some publication bias toward published studies (Polanin, Tanner-Smith, &

Hennessy, 2016). For instance, if the grey literature was removed, the overall transfer effect

size would have increased to g = 0.60. However, these moderation effects were not consistent

across all types of transfer (i.e., they did not exist for near transfer) and cognitive skills—

considering this, publication bias may not exist to the same extent in all sub-samples. Overall,

our meta-analysis provides only limited hints on possible reasons for the mixed results of

transfer effect studies in programming, as only the treatment of control groups and publication

status moderated the effects. To this end, it remains for future research to clarify which

additional factors may explain both within- and between-study variation of transfer effects.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 46

In contrast to our expectations and the findings reported by Liao and Bright (1991) and

Liao (2000), study design characteristics neither moderated the overall transfer effects nor

near and far transfer effects; only for metacognitive and spatial skills, moderation by study

design and randomization was apparent. The effect sizes extracted from the primary studies

can therefore be considered homogeneous across designs. Similarly, we did not find any

contextual moderator effects (i.e., effects of the programming languages, educational level of

participants, and intervention length). On the one hand, this observation highlights the

robustness of the results; yet, on the other hand, it complicates the practical implications our

study may have. At this point, we cannot identify specific conditions under which the transfer

of programming skills is most effective. The question which instructional approach may foster

the transfer of programming best remains unanswered.

Methodological Issues of Transfer Effect Studies

This meta-analytic review uncovered several methodological issues with studying near

and far transfer effects of computer programming: First, only few studies included a baseline

measure to disentangle the training effects of computer programming from the actual transfer

effects on other constructs. To draw a more detailed picture of the nature of transfer, however,

baseline measures of programming skills, next to measures of other skills, are needed on all

measurement occasions (for a general discussion of this issue, please refer to Gagné, Foster,

& Crowley, 1948; Melby-Lervåg et al., 2016).

Second, studies including multiple outcome measures often failed to report all relevant

statistics to calculate precise effect sizes, such as the correlations or covariances between the

outcome measures. If in fact correlations had been made available for such studies,

multivariate meta-analysis could have been performed—a second, effective approach to

handling dependent effect sizes next to three-level meta-analysis (M. W.-L. Cheung, 2014). A

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 47

combination between multivariate and multilevel meta-analysis could have provided deeper

insights into the link between multiple outcome variables across studies.

Third, another concern relates to the sample sizes achieved in the primary studies.

Most studies included small samples for both the treatment and control groups, thus limiting

the generalizability of transfer effects under study-specific interventions. Without any doubts,

these studies also show large standard errors of effect sizes and low statistical power to detect

transfer effects (Cohen, 1992; Hedges, 1982).

Fourth, from a substantive perspective, reasoning tests comprised several skills,

including problem solving, intelligence, and memory. Although these skills might be distinct

(Leighton & Sternberg, 2003; Ray, 1955), their measures are substantially correlated (e.g.,

Stadler, Becker, Gödker, Leutner, & Greiff, 2015). The current meta-analysis could not

distinguish between them and therefore considered problem solving, intelligence, and

memory facets of reasoning.

Fifth, the programming interventions presented in the primary studies varied

considerably, for instance, from game design to pure programming activities. This variation,

however, challenges the interpretation of an overall transfer effect and does not allow for

drawing conclusion on what approach works best for fostering transfer (Barnett & Ceci,

2002). We therefore encourage empirical studies that are aimed at replicating the

effectiveness of interventions for different content areas, contexts, and samples. From our

perspective, it also remains for future research which factors determine the successful transfer

of programming skills to other cognitive skills. These factors may well represent the

conceptual underpinnings, contexts, and instructional approaches of experimental studies,

next to the psychometric quality of cognitive skills tests (Mayer, 2015).

Considering that the above-mentioned issues, which are by no means unique to studies

of the transferability of computer programming (Gagné et al., 1948; Melby-Lervåg et al.,

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 48

2016; Sala & Gobet, 2017a), we believe that an optimal study design includes both treated

and untreated control groups, contains measures of both programming skills and other

cognitive skills, and administers pre-, post-, and follow-up tests thereof, with a substantial

time lag between post- and follow-up testing. These design characteristics allow researchers

to provide better evidence for the existence of transfer effects.

Limitations and Future Directions

Considering the procedures applied in this meta-analysis, we emphasized the

importance of selecting an appropriate model to estimate the transfer effect sizes in the

presence of nested data. Testing different assumptions and approaches to describe the data,

including the assumption of significant within- and between-study variances and the existence

of random instead of fixed effects, is critical to the selection of meta-analytic models (Card,

2012). In our meta-analysis, the hierarchical data structure (i.e., effect sizes nested in studies)

necessitated considering three-level meta-analysis and robust estimation procedures.

Whenever both within- and between-study variation of effect sizes existed, three-level models

were specified—if, however, one variance component was not significant, two-level models

had to be specified. As we differentiated effect sizes across domains (i.e., overall transfer

effects vs. specific effects on reasoning, programming, and other skills), this analytic

approach resulted in different meta-analytic baseline models used to synthesize effect sizes

(i.e., two-level fixed- and random-effects models and three-level random-effects models).

Although this diversity threatens the comparability of baseline models and thus limits the

possibilities of effect size comparisons across meta-analyses, a “one-ruler-fits-it-all”-decision

with one common type of model applied to all types of transfer and cognitive skills could

have created substantial bias in the estimation of variance components, especially in cases

where substantial within-study variance across effect sizes exists (Wilson, Polanin, & Lipsey,

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 49

2016). We believe that further research is needed to explore ways of dealing with such

situations.

Conclusion

Our meta-analysis showed that learning computer programming is associated with

certain cognitive benefits. These benefits included gains in programming skills, pointing to

the trainability of computational thinking through programming, and gains in other cognitive

skills, pointing to the transferability of programming skills. In this meta-analysis, we could

not confirm the doubts surrounding the far transfer of programming skills (e.g., Denning,

2017)—far transfer seems to exist for computer programming, yet not for all cognitive skills

and not to the same extent. We encourage taking a differentiated perspective on the study of

far transfer—a perspective that considers the diversity of cognitive skills and thus the

differential effectiveness of programming interventions. The finding that learning computer

programming aids some cognitive skills more than others is in line with previous meta-

analyses that examined transfer effects of programming and underlines that far transfer is

more likely to occur in situations that require cognitive skills close to programming. The

conceptualization of programming as a key element of computational thinking and thus

problem solving provides a suitable frame for explaining commonalities with other skills. We

encourage researchers to carefully design transfer effect studies that address the

methodological issues identified in the current body of research in several domains.

References

References marked with an asterisk indicate studies included in the meta-analysis.

Adams, R. J., Smart, P., & Huff, A. S. (2017). Shades of grey: Guidelines for working with

the grey literature in systematic reviews for management and organizational studies.

International Journal of Management Reviews, 19(4), 432-454.

http://dx.doi.org/10.1111/ijmr.12102

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 50

*Akcaoglu, M. (2013). Cognitive and Motivational Impacts of Learning Game Design on

Middle School Children (Order No. 3587683, Doctoral Dissertation), Michigan State

University, Ann Arbor. Retrieved from

https://search.proquest.com/docview/1427344597?accountid=14699 ProQuest

Dissertations & Theses A&I database. (1427344597)

*Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the Game-Design and

Learning (GDL) after-school program. Computers & Education, 75, 72-81.

doi:10.1016/j.compedu.2014.02.003

*Akdag, F. S. (1985). The effects of computer programming on young children's learning.

(Order No. 8602964, Doctoral Dissertation), The Ohio State University, Ann Arbor.

Retrieved from https://search.proquest.com/docview/303418725?accountid=14699

ProQuest Dissertations & Theses A&I database. (303418725)

Ambrósio, A., Pereira Júnior, C., & Georges, F. (2015). Digital ink for cognitive assessment

of computational thinking. Paper presented at the IEEE Frontiers in Education

Conference (FIE), Madrid, Spain.

*Au, W. K., & Leung, J. P. (1991). Problem Solving, Instructional Methods and Logo

Programming. Journal of Educational Computing Research, 7(4), 455-467.

doi:10.2190/K88Q-RWV1-AVPU-3DTK

*Baker, S. H. (1987). The effect of learning Logo on the problem-solving skills of elementary

school children. (Order No. 8602964, Doctoral Dissertation), University of Cincinnati,

Ann Arbor. Retrieved from

https://search.proquest.com/docview/303548553?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303418725)

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 51

*Barker, B. S., & Ansorge, J. (2007). Robotics as Means to Increase Achievement Scores in

an Informal Learning Environment. Journal of Research on Technology in Education,

39(3), 229-243. doi:10.1080/15391523.2007.10782481

Barnett, S. M., & Ceci, S. J. (2002). When and Where Do We Apply What We Learn? A

Taxonomy for Far Transfer. Psychological Bulletin, 128(4), 612-637.

http://dx.doi.org/10.1037//0033-2909.128.4.612

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is

Involved and what is the role of the computer science education community? ACM

Inroads, 2(1), 48-54. http://dx.doi.org/10.1145/1929887.1929905

Bassok, M. (1990). Transfer of domain-specific problem-solving procedures. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 16(3), 522-533.

http://dx.doi.org/10.1037/0278-7393.16.3.522

Batista, A. L. F., Connolly, T. M., & Angotti, A. P. (2016). A Framework for Games-Based

Construction Learning: A Text-Based Programming Languages Approach. Paper

presented at the 10th European Conference on Games Based Learning, At Paisley,

Scotland.

*Battista, M. T., & Clements, D. H. (1986). The effects of Logo and CAI problem-solving

environments on problem-solving abilities and mathematics achievement. Computers

in Human Behavior, 2(3), 183-193. doi:10.1016/0747-5632(86)90002-6

*Bebell, D. F. (1988). Higher-level cognitive effects of Logo computer programming and

problem-solving heuristics instruction. (Order No. 8826276, Doctoral Dissertation),

University of Denver, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303716651?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303716651)

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 52

Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018).

Meta-analysis of action video game impact on perceptual, attentional, and cognitive

skills. Psychological Bulletin, 144(1), 77-110. http://dx.doi.org/10.1037/bul0000130

*Bernardo, M. A., & Morris, J. D. (1994). Transfer Effects of a High School Computer

Programming Course on Mathematical Modeling, Procedural Comprehension, and

Verbal Problem Solution. Journal of Research on Computing in Education, 26(4),

523-536. http://dx.doi.org/10.1080/08886504.1994.10782108

*Blackwelder, C. K. (1986). Logo: A possible aid in the development of Piagetian formal

reasoning (conceptual, cognitive growth). (Order No. 8703946, Doctoral

Dissertations), Georgia State University, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303475827?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303475827)

*Block, E. B., Simpson, D. L., & Reid, D. (1987). Teaching young children programming and

word processing skills: The effects of three preparatory conditions. Journal of

Educational Computing Research, 3(4), 435-442. http://dx.doi.org/10.2190/TWKV-

24AR-H12K-MFRL

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to

meta-analysis. Chichester, West Sussex: John Wiley & Sons, Ltd.

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking Transfer: A Simple Proposal With

Multiple Implications. Review of Research in Education, 24(1), 61-100.

http://dx.doi.org/10.3102/0091732x024001061

Bransford, J. D., Vye, N., Stevens, R., Kuhl, P., Schwartz, D., Bell, P., . . . Reeves, B. (2005).

Learning theories and education: Toward a decade of synergy. In P. Alexander & P.

Winne (Eds.), Handbook of Educational Psychology (2 ed., pp. 209-244). Mahwah, N:

Lawrence Erlbaum.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 53

Bray, C. W. (1928). Transfer of learning. Journal of Experimental Psychology, 11(6), 443-

467. http://dx.doi.org/10.1037/h0071273

*Brown, Q., Mongan, W., Kusic, D., Garbarine, E., Fromm, E., & Fontecchio, A. (2008).

Computer Aided Instruction As A Vehicle For Problem Solving: Scratch Boards In

The Middle Years Classroom. Paper presented at the Annual Conference &

Exposition, Pittsburgh, Pennsylvania.

*Bruggeman, J. G. (1985). The effects of modeling and inspection methods upon problem

solving in a computer programming course. (Doctoral Dissertation), Montana State

University, Bozeman, Montana.

*Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing

Mathematical Thinking with Scratch. In G. Conole, T. Klobučar, C. Rensing, J.

Konert, & É. Lavoué (Eds.), Design for Teaching and Learning in a Networked

World: 10th European Conference on Technology Enhanced Learning, EC-TEL 2015,

Toledo, Spain, September 15-18, 2015, Proceedings (pp. 17-27). Cham: Springer

International Publishing.

*Campbell, P. F., Fein, G. G., & Schwartz, S. S. (1991). The Effects of Logo Experience on

First-Grade Children's Ability to Estimate Distance. Journal of Educational

Computing Research, 7(3), 331-349. doi:10.2190/QJY1-9JEG-0UAY-J30D

Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY:

Guilford Press.

Carlson, K. D., & Schmidt, F. L. (1999). Impact of experimental design on effect size:

Findings from the research literature on training. Journal of Applied Psychology,

84(6), 851-862. http://dx.doi.org/10.1037/0021-9010.84.6.851

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 54

*Cathcart, W. G. (1990). Effects of Logo Instruction on Cognitive Style. Journal of

Educational Computing Research, 6(2), 231-242. doi:10.2190/XNFC-RC25-FA6M-

B33N

*Chartier, D. (1996). An evaluation of two cognitive learning methods in adults on pre-

qualification schemes: Logo and logical reasoning workshops (ARL). European

Journal of Psychology of Education, 11(4), 443-457.

http://dx.doi.org/10.1007/BF03173283

Chen, Z., & Klahr, D. (2008). Remote Transfer of Scientific-Reasoning and Problem-Solving

Strategies in Children. In R. V. Kail (Ed.), Advances in Child Development and

Behavior (Vol. 36, pp. 419-470): JAI.

*Cheshire, F. D. (1981). The effect of learning computer programming skills on developing

cognitive abilities. (Order No. 8117163, Doctoral Dissertation), Arizona State

University, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303092565?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303092565)

Cheung, M. W.-L. (2013). Implementing Restricted Maximum Likelihood Estimation in

Structural Equation Models. Structural Equation Modeling: A Multidisciplinary

Journal, 20(1), 157-167. http://dx.doi.org/10.1080/10705511.2013.742404

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A

structural equation modeling approach. Psychological Methods, 19(2), 211-229.

http://dx.doi.org/10.1037/a0032968

Cheung, M. W.-L. (2015). Meta-Analysis: A Structural Equation Modeling Approach.

Chichester, West Sussex: John Wiley & Sons, Ltd.

Cheung, M. W.-L. (2018). metaSEM: Meta-Analysis using Structural Equation Modeling

(Version 1.0.0). Retrieved from https://github.com/mikewlcheung/metasem

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 55

*Choi, W. S. (1991). Effect of Pascal and FORTRAN programming instruction on the

problem-solving cognitive ability in formal operational stage students. (Order No.

9129372, Doctoral Dissertation), Texas Tech University, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303955348?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303955348)

Clements, D. H. (1986a). Logo and cognition: A theoretical foundation. Computers in Human

Behavior, 2(2), 95-110. http://dx.doi.org/10.1016/0747-5632(86)90026-9

*Clements, D. H. (1986b). Effects of Logo and CAI environments on cognition and creativity.

Journal of Educational Psychology, 78(4), 309-318. http://dx.doi.org/10.1037/0022-

0663.78.4.309

*Clements, D. H. (1987). Longitudinal Study of the Effects of Logo Programming on

Cognitive Abilities and Achievement. Journal of Educational Computing Research,

3(1), 73-94. doi:10.2190/RCNV-2HYF-60CM-K7K7

*Clements, D. H. (1990). Metacomponential development in a Logo programming

environment. Journal of Educational Psychology, 82(1), 141-149. doi:10.1037/0022-

0663.82.1.141

*Clements, D. H. (1991). Enhancement of Creativity in Computer Environments. American

Educational Research Journal, 28(1), 173-187.

http://dx.doi.org/10.3102/00028312028001173

Clements, D. H. (1995). Teaching creativity with computers. Educational Psychology Review,

7(2), 141-161. http://dx.doi.org/10.1007/bf02212491

*Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo

environment. Journal for Research in Mathematics Education, 20(5), 450-467.

http://dx.doi.org/10.2307/749420

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 56

*Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young

children's cognition. Journal of Educational Psychology, 76(6), 1051-1058.

http://dx.doi.org/10.1037/0022-0663.76.6.1051

*Clements, D. H., & Nastasi, B. K. (1988). Social and Cognitive Interactions in Educational

Computer Environments. American Educational Research Journal, 25(1), 87-106.

doi:10.3102/00028312025001087

Clements, D. H., & Sarama, J. (1997). Research on Logo. Computers in the Schools, 14(1-2),

9-46. http://dx.doi.org/10.1300/J025v14n01_02

Coburn, K. M., & Vevea, J. L. (2017). weightr: Estimating Weight-Function Models for

Publication Bias. R package version 1.1.2.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.

http://dx.doi.org/10.1037/0033-2909.112.1.155

Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on

mathematical problem-solving transfer. Journal of Educational Psychology, 79(4),

347-362. http://dx.doi.org/10.1037/0022-0663.79.4.347

*Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer

science. ACM SIGCSE Bulletin, 35(1), 191-195. doi:10.1145/792548.611966

Costa, J. M., & Miranda, G. L. (2017). Relation between Alice software and programming

learning: a systematic review of the literature and meta-analysis. British Journal of

Educational Technology, 48(6), 1464-1474. http://dx.doi.org/10.1111/bjet.12496

*Dalton, D. W. (1986). A Comparison of the Effects of LOGO Use and Teacher-Directed

Problem-Solving Instruction on the Problem-Solving Skills, Achievement, and

Attitudes of Low, Average, and High Achieving Junior High School Learners. Paper

presented at the Annual Convention of the Association for Educational

Communications and Technology, Las Vegas, NV.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 57

*Dalton, D. W., & Goodrum, D. A. (1991). The Effects of Computer Programming on

Problem-Solving Skills and Attitudes. Journal of Educational Computing Research,

7(4), 483-506. doi:10.2190/762V-KV6T-D3D1-KDY2

*Degelman, D., Free, J. U., Scarlato, M., Blackburn, J. M., & Golden, T. (1986). Concept

learning in preschool children: Effects of a short-term LOGO experience. Journal of

Educational Computing Research, 2(2), 199-205. doi:10.2190/RH2K-4AQ7-2598-

TVEA

Denning, P. J. (2017). Remaining Trouble Spots with Computational Thinking.

Communications of the ACM, 60(6), 33-39. http://dx.doi.org/10.1145/2998438

*Dillashaw, F. G., & Bell, S. R. (1985, April 15-18, 1985). Learning Outcomes of Computer

Programming Instruction for Middle-Grades Students: A Pilot Study. Paper presented

at the Annual Meeting of the National Association for Research in Science Teaching,

French Lick Springs, IN.

Duval, S., & Tweedie, R. (2000). Trim and Fill: A Simple Funnel-Plot–Based Method of

Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics, 56(2), 455-

463. http://dx.doi.org/10.1111/j.0006-341X.2000.00455.x

*Dziak, B. S. (1985). Programming computer graphics and the development of concepts in

geometry. (Doctoral Dissertation), Ohio State University, Columbus, Ohio.

Erol, O., & Kurt, A. A. (2017). The effects of teaching programming with scratch on pre-

service information technology teachers’ motivation and achievement. Computers in

Human Behavior, 77, 11-18. http://dx.doi.org/10.1016/j.chb.2017.08.017

*Fickel, M. G. (1986). The effects of Logo study on problem-solving cognitive abilities of

sixth-grade students. (Order No. 8614452, Doctoral Dissertation), The University of

Nebraska - Lincoln, Ann Arbor. Retrieved from

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 58

https://search.proquest.com/docview/303442646?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303442646)

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–

developmental inquiry. American Psychologist, 34(10), 906-911.

http://dx.doi.org/10.1037/0003-066X.34.10.906

*Flores, A. (1985). Effect of computer programming on the learning of calculus concepts.

(Order No. 8602996, Doctoral Dissertation), The Ohio State University, Ann Arbor.

Retrieved from https://search.proquest.com/docview/303376565?accountid=14699

ProQuest Dissertations & Theses A&I database. (303376565)

Flórez, F. B., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017).

Changing a Generation’s Way of Thinking: Teaching Computational Thinking

Through Programming. Review of Educational Research, 87(4), 834-860.

http://dx.doi.org/10.3102/0034654317710096

Gagné, R. M., Foster, H., & Crowley, M. E. (1948). The measurement of transfer of training.

Psychological Bulletin, 45(2), 97-130. http://dx.doi.org/10.1037/h0061154

*Gallini, J. K. (1987). A Comparison of the Effects of Logo and a CAI Learning Environment

on Skills Acquisition. Journal of Educational Computing Research, 3(4), 461-477.

doi:10.2190/JRXE-4CAG-P150-GQ8G

Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015). Computing Education in K-12

Schools: A Review of the Literature. Paper presented at the IEEE Global Engineering

Education Conference (EDUCON), Tallinn, Estonia.

*Geva, E., & Cohen, R. (1987). Transfer of spatial concepts from Logo to map-reading.

Retrieved from Toronto, Ontario, Canada: https://eric.ed.gov/?id=ED288608

*Gibbon, L. W. (2007). Effects of LEGO Mindstorms on convergent and divergent problem-

solving and spatial abilities in fifth and sixth grade students. (Doctoral Dissertation),

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 59

Seattle Pacific University, Seattle, WA. Retrieved from

http://adsabs.harvard.edu/abs/2007PhDT........49G

*González, M. R. (2016). Codigoalfabetización y pensamiento computacional en educación

primaria y secundaria: validación de un instrumento y evaluación de programas.

(Doctoral Dissertation), Universidad Nacional de Educación a Distancia. Retrieved

from https://www.educacion.es/teseo/mostrarRef.do?ref=1313319

Greeno, J. G., & Middle School Mathematics through Applications Project Group. (1998).

The situativity of knowing, learning, and research. American Psychologist, 53(1), 5-

26. http://dx.doi.org/10.1037/0003-066X.53.1.5

Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A. C., &

Martin, R. (2014). Domain-general problem solving skills and education in the 21st

century. Educational Research Review, 13, 74-83.

http://dx.doi.org/10.1016/j.edurev.2014.10.002

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the

Field. Educational Researcher, 42(1), 38-43.

http://dx.doi.org/10.3102/0013189x12463051

*Hamada, R. M. (1986). The relationship between learning Logo and proficiency in

mathematics. (Order No. 8623535, Doctoral Dissertation), Columbia University, Ann

Arbor. Retrieved from

https://search.proquest.com/docview/303487782?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303487782)

*Hayes, J., & Stewart, I. (2016). Comparing the effects of derived relational training and

computer coding on intellectual potential in school-age children. British Journal of

Educational Psychology, 86(3), 397-411. http://dx.doi.org/10.1111/bjep.12114

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 60

Hedges, L. V. (1982). Estimation of Effect Size From a Series of Independent Experiments.

Psychological Bulletin, 92(2), 490-499. http://dx.doi.org/10.1037/0033-2909.92.2.490

Hennessy, S., & Amabile, T. (2010). Creativity. Annual Review of Psychology, 61, 569-598.

http://dx.doi.org/10.1146/annurev.psych.093008.100416

Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis.

Statistics in Medicine, 21(11), 1539-1558. http://dx.doi.org/10.1002/sim.1186

Hutchison, A., Nadolny, L., & Estapa, A. (2016). Using Coding Apps to Support Literacy

Instruction and Develop Coding Literacy. The Reading Teacher, 69(5), 493-503.

http://dx.doi.org/10.1002/trtr.1440

Jacobse, A., & Harskamp, E. (2011). A meta-analysis of the effects of instructional

interventions on students’ mathematics achievement. Retrieved from Groningen:

https://www.rug.nl/research/portal/publications/a-metaanalysis-of-the-effects-of-

instructional-interventions-on-students-mathematics-achievement(1a0ea36d-3ca3-

4639-9bb4-6fa220e50f38).html

*Jenkins, C. (2015). Poem Generator: A Comparative Quantitative Evaluation of a

Microworlds-Based Learning Approach for Teaching English. International Journal

of Education and Development using Information and Communication Technology,

11(2), 153-167.

*Johnson-Gentile, K., Clements, D. H., & Battista, M. T. (1994). Effects of Computer and

Noncomputer Environments on Students' Conceptualizations of Geometric Motions.

Journal of Educational Computing Research, 11(2), 121-140.

http://dx.doi.org/10.2190/49EE-8PXL-YY8C-A923

*Julie, C. (1988). Effects of an integrated computer and manipulative environment on

preservice elementary teachers' understanding of novel mathematical concepts. (Order

No. 8815364, Doctoral Dissertation), University of Illinois at Urbana-Champaign,

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 61

Ann Arbor. Retrieved from

https://search.proquest.com/docview/303689813?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303689813)

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming.

Cambridge, MA: The MIT Press.

Kafai, Y. B., & Burke, Q. (2015). Constructionist Gaming: Understanding the Benefits of

Making Games for Learning. Educational Psychologist, 50(4), 313-334.

http://dx.doi.org/10.1080/00461520.2015.1124022

*Kapa, E. (1999). Problem solving, planning ability and sharing processes with Logo. Journal

of Computer Assisted Learning, 15(1), 73-84. doi:10.1046/j.1365-2729.1999.151077.x

*Kazakoff, E. R., & Bers, M. (2012). Programming in a robotics context in the kindergarten

classroom: The impact on sequencing skills. Journal of Educational Multimedia and

Hypermedia, 21(4), 371-391.

*Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based

intensive robotics and programming workshop on sequencing ability in early

childhood. Early Childhood Education Journal, 41(4), 245-255. doi:10.1007/s10643-

012-0554-5

*Kim, B., Kim, T., & Kim, J. (2013). Paper-and-Pencil Programming Strategy toward

Computational Thinking for Non-Majors: Design Your Solution. Journal of

Educational Computing Research, 49(4), 437-459.

http://dx.doi.org/10.2190/EC.49.4.b

*Kim, S., Chung, K., & Yu, H. (2013). Enhancing Digital Fluency through a Training

Program for Creative Problem Solving Using Computer Programming. The Journal of

Creative Behavior, 47(3), 171-199. http://dx.doi.org/10.1002/jocb.30

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 62

*Kiser, S. S. (1989). Logo programming, metacognitive skills in mathematical problem-

solving, and mathematics achievement. (Order No. 9032983, Doctoral Dissertation),

The University of North Carolina at Chapel Hill, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303791402?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303791402)

*Koohang, A. A. (1984). Traditional Method versus Computer-Aided Instruction Method in

Teaching BASIC Programming to Vocational High School Students. Retrieved from

Carbondale, IL:

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=

eric2&AN=ED273247

*Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A Study of the Development

of Programming Ability and Thinking Skills in High School Students. Journal of

Educational Computing Research, 2(4), 429-458. doi:10.2190/BKML-B1QV-KDN4-

8ULH

*Lai, A.-F., & Yang, S.-M. (2011). The learning effect of visualized programming learning

on 6 th graders' problem solving and logical reasoning abilities. Paper presented at

the International Conference onElectrical and Control Engineering (ICECE).

*Lee, K. O. (1995). The effects of computer programming training on the cognitive

development of 7-8 year-old children. Korean Journal of Child Studies, 16(1), 79-88.

*Lehrer, R., & Randle, L. (1987). Problem Solving, Metacognition and Composition: The

Effects of Interactive Software for First-Grade Children. Journal of Educational

Computing Research, 3(4), 409-427. http://dx.doi.org/10.2190/UFWW-FADF-BK21-

YR5N

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 63

*Lehrer, R., Guckenberg, T., & Lee, O. (1988). Comparative study of the cognitive

consequences of inquiry-based Logo instruction. Journal of Educational Psychology,

80(4), 543-553. doi:10.1037/0022-0663.80.4.543

*Lehrer, R., Randle, L., & Sancilio, L. (1989). Learning Preproof Geometry With LOGO.

Cognition and Instruction, 6(2), 159-184. doi:10.1207/s1532690xci0602_2

Lehtonen, M., Soveri, A., Laine, A., Järvenpää, J., de Bruin, A., & Antfolk, J. (2018). Is

bilingualism associated with enhanced executive functioning in adults? A meta-

analytic review. Psychological Bulletin. http://dx.doi.org/10.1037/bul0000142

Leighton, J. P., & Sternberg, R. J. (2003). Reasoning and Problem Solving. In I. B. Weiner

(Ed.), Handbook of Psychology. Hoboken, NJ: John Wiley & Sons, Inc.

*Lenamond, D. L. (1992). A comparison of the effects of Lego TC Logo and problem-solving

software on problem-solving skills. (Order No. 1346643, Master Dissertation),

University of Houston-Clear Lake, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303997213?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303997213)

Li, Q., & Ma, X. (2010). A Meta-analysis of the Effects of Computer Technology on School

Students’ Mathematics Learning. Educational Psychology Review, 22(3), 215–243.

http://dx.doi.org/10.1007/s10648-010-9125-8

Liao, Y.-k. C. (2000). A meta-analysis of computer programming on cognitive outcomes: An

updated synthesis. Paper presented at the Proceedings of World Conference on

Educational Multimedia, Hypermedia and Telecommunications, Montreal, Canada.

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of Computer Programming on Cognitive

Outcomes: A Meta-Analysis. Journal of Educational Computing Research, 7(3), 251-

268. http://dx.doi.org/10.2190/e53g-hh8k-ajrr-k69m

Lipsey, M. W., & Wilson, D. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 64

Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, W. G. (2014). On the joys of missing

data. Journal of Pediatric Psychology, 39(2), 151-162.

http://dx.doi.org/10.1093/jpepsy/jst048

*Littlefield, J., Delclos, V. R., Bransford, J. D., Clayton, K. N., & Franks, J. J. (1989). Some

prerequisites for teaching thinking: Methodological issues in the study of LOGO

programming. Cognition and Instruction, 6(4), 331-366.

doi:10.1207/s1532690xci0604_4

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and

challenges for future research. The Journal of the Learning Sciences, 15(4), 431-449.

http://dx.doi.org/10.1207/s15327809jls1504_1

*Luckow, J. J. (1984). The effects of studying logo turtle graphics on spatial ability. (Doctoral

Dissertation), Boston University, Boston, MA.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51-61. http://dx.doi.org/10.1016/j.chb.2014.09.012

Ma, H.-H. (2006). A Synthetic Analysis of the Effectiveness of Single Components and

Packages in Creativity Training Programs. Creativity Research Journal, 18(4), 435-

446. http://dx.doi.org/10.1207/s15326934crj1804_3

Ma, H.-H. (2009). The Effect Size of Variables Associated With Creativity: A Meta-Analysis.

Creativity Research Journal, 21(1), 30-42.

http://dx.doi.org/10.1080/10400410802633400

*Many, W. A., Lockard, J., Abrams, P. D., & Friker, W. (1988). The effect of learning to

program in Logo on reasoning skills of junior high school students. Journal of

Educational Computing Research, 4(2), 203-213. doi:10.2190/TC38-RJT8-L241-

DV9W

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 65

Mayer, R. E. (2015). On the Need for Research Evidence to Guide the Design of Computer

Games for Learning. Educational Psychologist, 50(4), 349-353.

http://dx.doi.org/10.1080/00461520.2015.1133307

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: a review of the literature from an educational

perspective. Computer Science Education, 18(2), 67-92.

http://dx.doi.org/10.1080/08993400802114581

McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the

shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1-10.

http://dx.doi.org/10.1016/j.intell.2008.08.004

Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working Memory Training Does Not

Improve Performance on Measures of Intelligence or Other Measures of "Far

Transfer": Evidence From a Meta-Analytic Review. Perspectives on Psychological

Science, 11(4), 512-534. http://dx.doi.org/10.1177/1745691616635612

*Mevarech, Z. R., & Kramarski, B. (1992). How and how much can cooperative Logo

environments enhance creativity and social relationships? Learning and Instruction,

2(3), 259-274. doi:10.1016/0959-4752(92)90012-B

*Miller, E. A. (1985). The use of Logo-Turtle graphics in a training program to enhance

spatial visualization. (Doctoral Dissertation), Concordia University, Québec, Canada.

*Miller, G. E., & Emihovich, C. (1986). The effects of mediated programming instruction on

preschool children's self-monitoring. Journal of Educational Computing Research,

2(3), 283-297. doi:10.2190/CEMM-LQHL-XN6D-1U15

*Miller, R. B., Kelly, G. N., & Kelly, J. T. (1988). Effects of Logo computer programming

experience on problem solving and spatial relations ability. Contemporary

Educational Psychology, 13(4), 348-357. doi:10.1016/0361-476X(88)90034-3

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 66

*Milner, S. (1973). The Effects of Computer Programming on Performance in Mathematics.

Paper presented at the Annual meeting of the American Educational Research

Association, New Orleans, Louisiana.

*Missiuna, C., & et al. (1987). Development and Evaluation of the "Thinking with LOGO"

Curriculum. Retrieved from Alberta, Canada:

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=

eric2&AN=ED287453

Moeyaert, M., Ugille, M., Natasha Beretvas, S., Ferron, J., Bunuan, R., & Van den Noortgate,

W. (2017). Methods for dealing with multiple outcomes in meta-analysis: a

comparison between averaging effect sizes, robust variance estimation and multilevel

meta-analysis. International Journal of Social Research Methodology, 20(6), 559-572.

http://dx.doi.org/10.1080/13645579.2016.1252189

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group, et al. (2009).

Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA

Statement. PLOS Medicine, 6(7), 1-6. http://dx.doi.org/10.1371/journal.pmed.1000097

Moreno-Leon, J., & Robles, G. (2016). Code to learn with Scratch? A systematic literature

review. Paper presented at the 2016 IEEE Global Engineering Education Conference

(EDUCON).

*Moreno-León, J., Robles, G., & Román-González, M. (2016). Code to Learn: Where Does It

Belong in the K-12 Curriculum? Journal of Information Technology Education:

Research, 15, 283-303.

Morris, S. B. (2008). Estimating Effect Sizes from Pretest-Posttest-Control Group Designs.

Organizational Research Methods, 11(2), 364-386. doi: 10.1177/1094428106291059

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 67

*Mynatt, B. T., Smith, K. H., Kamouri, A. L., & Tykodi, T. A. (1986). Which way to

computer literacy, programming or applications experience? International Journal of

Man-Machine Studies, 25(5), 557-572. doi:10.1016/S0020-7373(86)80023-2

Naragon-Gainey, K., McMahon, T. P., & Chacko, T. P. (2017). The structure of common

emotion regulation strategies: A meta-analytic examination. Psychological Bulletin,

143(4), 384-427. http://dx.doi.org/10.1037/bul0000093

*Nastasi, B. K., & Clements, D. H. (1992). Social-cognitive behaviors and higher-order

thinking in educational computer environments. Learning and Instruction, 2(3), 215-

238. doi:10.1016/0959-4752(92)90010-J

*Nastasi, B. K., Clements, D. H., & Battista, M. T. (1990). Social-cognitive interactions,

motivation, and cognitive growth in Logo programming and CAI problem-solving

environments. Journal of Educational Psychology, 82(1), 150-158. doi:10.1037/0022-

0663.82.1.150

*Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of Robotics and

Geospatial Technology Interventions on Youth STEM Learning and Attitudes.

Journal of Research on Technology in Education, 42(4), 391-408.

http://dx.doi.org/10.1080/15391523.2010.10782557

*Olson, J. K. (1985). Using Logo to supplement the teaching of geometric concepts in the

elementary school classroom. (Doctoral Dissertation), Oklahoma State University.

Retrieved from https://shareok.org/handle/11244/17733

*Oprea, J. M. (1984). The effects of computer programming on a student's mathematical

generalization and understanding of variables. (Order No. 8504061, Doctoral

Dissertation), The Ohio State University, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303317313?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303317313)

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 68

*Ortiz, A. M. (2015). Examining students’ proportional reasoning strategy levels as evidence

of the impact of an integrated LEGO robotics and mathematics learning experience.

Journal of Technology Education, 26(2), 46-69.

http://dx.doi.org/10.21061/jte.v26i2.a.3

*Ortiz, E. (1987). A comparison of a computer programming approach to a textbook

approach in teaching the mathematics concept "variable" to sixth graders. (Order No.

8728210, Doctoral Dissertation), Louisiana State University and Agricultural &

Mechanical College, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303605676?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303605676)

*Owston, R., Wideman, H., Ronda, N. S., & Brown, C. (2009). Computer game development

as a literacy activity. Computers & Education, 53(3), 977-989.

http://dx.doi.org/10.1016/j.compedu.2009.05.015

Palumbo, D. B. (1990). Programming Language/Problem-Solving Research: A Review of

Relevant Issues. Review of Educational Research, 60(1), 65-89.

http://dx.doi.org/10.3102/00346543060001065

*Palumbo, D. B., & Michael Reed, W. (1991). The Effect of BASIC Programming Language

Instruction on High School Students’ Problem Solving Ability and Computer Anxiety.

Journal of Research on Computing in Education, 23(3), 343-372.

doi:10.1080/08886504.1991.10781967

*Papaevripidou, M., Constantinou, C. P., & Zacharia, Z. C. (2007). Modeling complex marine

ecosystems: an investigation of two teaching approaches with fifth graders. Journal of

Computer Assisted Learning, 23(2), 145-157. doi:10.1111/j.1365-2729.2006.00217.x

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 69

*Pardamean, B., Evelin, & Honni. (2011). The effect of Logo programming language for

creativity and problem solving. Paper presented at the Proceedings of the 10th

WSEAS international conference on E-Activities, Jakarta, Indonesia.

*Pardamean, B., Suparyanto, T., & Evelin. (2015). Improving Problem-Solving Skills through

Logo Programming Language. New Educational Review, 41(3), 52-64.

doi:10.15804/tner.2015.41.3.04

*Park, J. (2015). Effect of Robotics enhanced inquiry based learning in elementary Science

education in South Korea. Journal of Computers in Mathematics and Science

Teaching, 34(1), 71-95.

Pastor, D. A., & Lazowski, R. A. (2018). On the Multilevel Nature of Meta-Analysis: A

Tutorial, Comparison of Software Programs, and Discussion of Analytic Choices.

Multivariate Behavioral Research, 53(1), 74-89.

http://dx.doi.org/10.1080/00273171.2017.1365684

*Pea, R. D., & Kurland, D. M. (1984). Logo Programming and the Development of Planning

Skills. Retrieved from

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=

eric2&AN=ED249930

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer

programming. New Ideas in Psychology, 2(2), 137-168.

http://dx.doi.org/10.1016/0732-118X(84)90018-7

Perkins, D. N., & Salomon, G. (1992). Transfer of learning. In T. N. Postlethwaite & T.

Husen (Eds.), International encyclopedia of education (Vol. 2, pp. 6452-6457).

Oxford, UK: Pergamon Press.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 70

Polanin, J. R., Tanner-Smith, E. E., & Hennessy, E. A. (2016). Estimating the Difference

Between Published and Unpublished Effect Sizes: A Meta-Review. Review of

Educational Research, 86(1), 207-236. http://dx.doi.org/10.3102/0034654315582067

*Pollock, M. L. (1997). Facilitating cognitive abilities and positive school attitudes among

elementary school students through Lego-Logo programming. (Order No. 9737665,

Doctoral Dissertation), North Carolina State University, Ann Arbor. Retrieved from

https://search.proquest.com/docview/304369072?accountid=14699 ProQuest

Dissertations & Theses A&I database. (304369072)

*Poulin-DuBois, D., McGilly, C. A., & Shultz, T. R. (1989). Psychology of Computer Use:

X. Effect of Learning Logo on Children's Problem-Solving Skills. Psychological

Reports, 64(3), 1327-1337. doi:10.2466/pr0.1989.64.3c.1327

*Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school

students’ reasoning skills and mathematical self-efficacy and problem solving.

Instructional Science, 45(5), 583-602. http://dx.doi.org/10.1007/s11251-017-9421-5

Ray, W. S. (1955). Complex tasks for use in human problem-solving research. Psychological

Bulletin, 52(2), 134-149. http://dx.doi.org/10.1037/h0044763

*Reding, A. H. (1981). The effects of computer programming on problem solving abilities of

fifth grade students. (Order No. 8201793, Doctoral Dissertation), University of

Wyoming, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303188829?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303188829)

*Reeder, L. K., & Leming, J. S. (1994). The Effect of Logo on the Nonverbal Reasoning

Ability of Rural and Disadvantaged Third Graders. Journal of Research on Computing

in Education, 26(4), 558-564. doi:10.1080/08886504.1994.10782111

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 71

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which

cognitive abilities underlie computational thinking? Criterion validity of the

Computational Thinking Test. Computers in Human Behavior, 72, 678-691.

http://dx.doi.org/10.1016/j.chb.2016.08.047

*Rose, N. S. (1984). Effects of learning computer programming on the general problem-

solving abilities of fifth grade students. (Doctoral Dissertation), North Texas State

University, Denton, TX. Retrieved from

https://digital.library.unt.edu/ark:/67531/metadc331886/

Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for

calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464-468.

http://dx.doi.org/10.1111/j.0014-3820.2005.tb01004.x

*Rucinski, T. T. (1986). The effects of computer programming on the problem-solving

strategies of preservice teachers. (Order No. 8701602, Doctoral Dissertation),

University of Illinois at Urbana-Champaign, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303417189?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303417189)

Sala, G., & Gobet, F. (2016). Do the benefits of chess instruction transfer to academic and

cognitive skills? A meta-analysis. Educational Research Review, 18, 46-57.

http://dx.doi.org/10.1016/j.edurev.2016.02.002

Sala, G., & Gobet, F. (2016). Do the benefits of chess instruction transfer to academic and

cognitive skills? A meta-analysis. Educational Research Review, 18, 46-57.

doi:10.1016/j.edurev.2016.02.002

Sala, G., & Gobet, F. (2017a). Does Far Transfer Exist? Negative Evidence From Chess,

Music, and Working Memory Training. Current Directions in Psychological Science,

26(6), 515-520. http://dx.doi.org/10.1177/0963721417712760

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 72

Sala, G., & Gobet, F. (2017b). When the music’s over. Does music skill transfer to children’s

and young adolescents’ cognitive and academic skills? A meta-analysis. Educational

Research Review, 20, 55-67. http://dx.doi.org/10.1016/j.edurev.2016.11.005

Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive

ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2),

111-139. http://dx.doi.org/10.1037/bul0000139

Salleh, S. M., Shukur, Z., & Judi, H. M. (2013). Analysis of Research in Programming

Teaching Tools: An Initial Review. Procedia - Social and Behavioral Sciences, 103,

127-135. http://dx.doi.org/10.1016/j.sbspro.2013.10.317

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When

and how? Journal of Educational Computing Research, 3(2), 149-169.

https://doi.org/10.2190/6F4Q-7861-QWA5-8PL1

Scherer, R. (2016). Learning from the past – The need for empirical evidence on the transfer

effects of computer programming skills. Frontiers in Psychology, 7(1390).

http://dx.doi.org/10.3389/fpsyg.2016.01390

Schmidt, F. L., & Hunter, J. E. (2014). Methods of meta-analysis: Correcting error and bias

in research findings (3 ed.). Thousand Oaks, CA: Sage.

Schmucker, C. M., Blümle, A., Schell, L. K., Schwarzer, G., Oeller, P., Cabrera, L., . . . on

behalf of the, O. c. (2017). Systematic review finds that study data not published in

full text articles have unclear impact on meta-analyses results in medical research.

PLoS One, 12(4), 1-16. http://dx.doi.org/10.1371/journal.pone.0176210

Schunk, D. H. (2012). Learning theories: An educational perspective (6th ed.). Boston, MA:

Pearson Education.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 73

Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The effectiveness of creativity training: A

quantitative review. Creativity Research Journal, 16(4), 361-388.

http://dx.doi.org/10.1080/10400410409534549

*Seidman, R. H. (1981). The Effects of Learning a Computer Programming Language on the

Logical Reasoning of School Children. Paper presented at the Annual Meeting of the

American Educational Research Association, Los Angeles, CA.

*Seo, Y.-H., & Kim, J.-H. (2016). Analyzing the Effects of Coding Education through Pair

Programming for the Computational Thinking and Creativity of Elementary School

Students. Indian Journal of Science and Technology, 9(46).

http://dx.doi.org/10.17485/ijst/2016/v9i46/107837

*Shaw, D. G. (1986). Effects of Learning to Program A Computer in BASIC or Logo on

Problem-solving Abilities. AEDS Journal, 19(2-3), 176-189.

doi:10.1080/00011037.1986.11008422

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review, 22, 142-158.

http://dx.doi.org/10.1016/j.edurev.2017.09.003

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-Curve: A Key to the File-Drawer.

Journal of Experimental Psychology: General, 143(2), 534-547.

http://dx.doi.org/10.1037/a0033242

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2017). P-curve Online App Version 4.06.

http://www.p-curve.com/app4/

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and

advanced multilevel modeling (2 ed.). London: Sage.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and

advanced multilevel modeling (2 ed.). London: Sage.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 74

Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem

solving and intelligence: A meta-analysis. Intelligence, 53, 92-101.

http://dx.doi.org/10.1016/j.intell.2015.09.005

Sternberg, R. J. (1982). Reasoning, problem solving, and intelligence. In R. J. Sternberg (Ed.),

Handbook of Human Intelligence (pp. 225-307). New York, NY: Cambridge

University Press.

Stockard, J., Wood, T. W., Coughlin, C., & Khoury, C. R. (2018). The Effectiveness of Direct

Instruction Curricula: A Meta-Analysis of a Half Century of Research. Review of

Educational Research. http://dx.doi.org/10.3102/0034654317751919

*Subhi, T. (1999). The impact of LOGO on gifted children's achievement and creativity.

Journal of Computer Assisted Learning, 15(2), 98-108. doi:10.1046/j.1365-

2729.1999.152082.x

Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices

with teaching and learning on students' learning performance: A meta-analysis and

research synthesis. Computers & Education, 94, 252-275.

doi:10.1016/j.compedu.2015.11.008

*Swan, K. (1991). Programming objects to think with: LOGO and the teaching and learning

of problem solving. Journal of Educational Computing Research, 7(1), 89-112.

doi:10.2190/UX0M-NHM2-1G5X-01X4

*Swan, K., & Black, J. B. (1990). Logo programming, problem solving, and knowledge-based

instruction. Paper presented at the Annual Meeting of the American Educational

Research Association, Boston, MA.

*Taitt, N. P. (1985). The effect of computer programming instruction on the problem solving

ability of pre-service elementary teachers. (Order No. 8521891, Doctoral

Dissertation), University of Illinois at Urbana-Champaign, Ann Arbor. Retrieved from

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 75

https://search.proquest.com/docview/303345336?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303345336)

*Teahan, M. (2001). The effect of an introductory course in QBasic programming on the

mathematical problem-solving skills of transition year students and on their attitudes

to mathematics. (Doctoral Dissertation), Dublin City University, Dublin. Retrieved

from computing.dcu.ie/wpapers/MCE/2001/0501.ps

*Thompson, A. D., & Chen Wang, H.-m. (1988). Effects of a Logo microworld on student

ability to transfer a concept. Journal of Educational Computing Research, 4(3), 335-

347. doi:10.2190/1U7L-33HQ-R2R1-6DCF

Tsai, K. C. (2013). A Review of the Effectiveness of Creative Training on Adult Learners.

Journal of Social Science Studies, 1(1), 17. http://dx.doi.org/10.5296/jsss.v1i1.4329

*Tsuei, M. (1998). The effects of Logo programming and multimedia software on fifth-grade

students' creativity in Taiwan. (Doctoral Dissertation), The University of Texas at

Austin, Austin, TX. Retrieved from https://www.learntechlib.org/p/129241

*Turner, S. V., & Land, M. L. (1988). Cognitive Effects of a Logo-Enriched Mathematics

Program for Middle School Students. Journal of Educational Computing Research,

4(4), 443-452. doi:10.2190/R0XH-2VDD-4VFA-YB3H

Umapathy, K., & Ritzhaupt, A. D. (2017). A Meta-Analysis of Pair-Programming in

Computer Programming Courses: Implications for Educational Practice. ACM

Transactions on Computing Education, 17(4), 1-13.

http://dx.doi.org/10.1145/2996201

Uribe, D., Klein, J. D., & Sullivan, H. (2003). The effect of computer-mediated collaborative

learning on solving ill-defined problems. Educational Technology Research &

Development, 51(1), 5-19. http://dx.doi.org/10.1007/BF02504514

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 76

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., &

Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training

studies. Psychological Bulletin, 139(2), 352-402. http://dx.doi.org/10.1037/a0028446

Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2013).

Three-level meta-analysis of dependent effect sizes. Behavior Research Methods,

45(2), 576-594. http://dx.doi.org/10.3758/s13428-012-0261-6

*VanLengen, C., & Maddux, C. (1990). Does instruction in computer programming improve

problem solving ability? Journal of IS Education, 12(2), 11-16.

Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., . . .

Salanti, G. (2016). Methods to estimate the between-study variance and its uncertainty

in meta-analysis. Research Synthesis Methods, 7(1), 55-79.

http://dx.doi.org/10.1002/jrsm.1164

Vevea, J. L., & Hedges, L. V. (1995). A general linear model for estimating effect size in the

presence of publication bias. Psychometrika, 60(3), 419-435.

http://dx.doi.org/10.1007/bf02294384

Viechtbauer, W. (2017). metafor: Meta-Analysis Package for R. R package version 2.0-0.

Retrieved from https://cran.r-project.org/web/packages/metafor/index.html

Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-

analysis. Research Synthesis Methods, 1(2), 112-125.

http://dx.doi.org/10.1002/jrsm.11

Vihavainen, A., Airaksinen, J., & Watson, C. (2014). A systematic review of approaches for

teaching introductory programming and their influence on success. Paper presented at

the 2014 Tenth Annual Conference on International Computing Education Research

(ICER), Glasgow, Scotland.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 77

Voss, J. F., Wiley, J., & Carretero, M. (1995). Acquiring Intellectual Skills. Annual Review of

Psychology, 46(1), 155-181. http://dx.doi.org/10.1146/annurev.ps.46.020195.001103

*Weaver, C. L. (1991). Young children learn geometric and spatial concepts using Logo with

a screen turtle and a floor turtle. (Order No. 9135151, Doctoral Dissertation), State

University of New York at Buffalo, Ann Arbor. Retrieved from

https://search.proquest.com/docview/303972489?accountid=14699 ProQuest

Dissertations & Theses A&I database. (303972489)

Wilson, S. J., Polanin, J. R., & Lipsey, M. W. (2016). Fitting meta-analytic structural equation

models with complex datasets. Research Synthesis Methods, 7(2), 121-139.

http://dx.doi.org/10.1002/jrsm.1199

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

http://dx.doi.org/10.1145/1118178.1118215

Woodworth, R. S., & Thorndike, E. L. (1901). The influence of improvement in one mental

function upon the efficiency of other functions. (I). Psychological Review, 8(3), 247-

261. http://dx.doi.org/10.1037/h0074898

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational Thinking as an Emerging

Competence Domain. In M. Mulder (Ed.), Competence-based Vocational and

Professional Education: Bridging the Worlds of Work and Education (pp. 1051-1067).

Cham: Springer International Publishing.

*Yi, B. J., & Eu, L. K. (2016). Effects of using Logo on pupils' learning in two-dimensional

spaces. Malaysian Online Journal of Educational Technology, 4(3), 27-36.

*Yoder, V. A. (1988). Exploration of the interaction of the van Hiele levels of thinking with

Logo and geometry understandings in preservice elementary teachers. (Order No.

8826845, Doctoral Dissertation), The Pennsylvania State University, Ann Arbor.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 78

Retrieved from https://search.proquest.com/docview/303722431?accountid=14699

ProQuest Dissertations & Theses A&I database. (303722431)

*Yusuf, M. M. (1995). The Effects of Logo-Based Instruction. Journal of Educational

Computing Research, 12(4), 335-362. doi:10.2190/NNLP-MN2R-M6CV-9EJF

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 79

Tables

Table 1

Types of Cognitive Skills Measured in Primary Studies

Cognitive skills Facets of these skills Examples measures and references

Programming

skills

§ Programming skills (including creating,

modifying, and evaluating programming code)

§ Programming knowledge (including procedural

and conceptual knowledge)

Logo Knowledge Test (syntactic, semantic, schematic, and

strategic programming knowledge; Lehrer, Lee, & Jong, 1999)

Computational Thinking Test (Jenkins, 2015)

Logo Criterion Task (Block, Simpson, & Reid, 1987)

Reasoning § Intelligence, attention, perception, and memory

§ Problem solving

§ Critical thinking

Cornell Critical Thinking Test (Psycharis & Kallia, 2017)

Developing Cognitive Abilities Test (Rose, 1984)

Ross Test of Higher Cognitive Processes (Bebell, 1988)

Group Assessment of Logical Thinking (Kim, Kim, & Kim, 2013)

Creative thinking § Flexibility

§ Fluency

§ Elaboration

§ Originality

Torrance Test of Creative Thinking (Seo & Kim, 2016; Clements,

1991)

Spatial skills § Spatial understanding and reasoning

§ Spatial memory

Spatial Aptitude Test (Chartier, 1996)

Eliot-Price Spatial Test (Miller, 1985)

Metacognition Overall metacognitive skills Assessment of Metacognitive Skills (Clements, 1986b)

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 80

Awareness of Comprehension Failure Measure (Clements &

Gullo, 1984)

Metacognitive Components of Problem Solving (Lehrer & Randle,

1987)

Mathematical

skills

§ Mathematics achievement, modeling, and

problem solving

§ Knowledge about mathematical concepts

Wide Range Achievement Test (Clements, 1986b)

California Achievement Test (Bernardo & Morris, 1994)

Mathematical Proportional Reasoning Test (Ortiz, 2015)

Geometry Achievement Test (Johnson-Gentile, Clements, &

Battista, 1994)

Literacy § General language skills and spelling

§ Reading

§ Writing

Group Reading Assessment and Diagnostic Evaluation, Student

Writing Test (Owston et al., 2009)

New York State Holistic Writing Assessment (Lehrer & Randle,

1987)

School

achievement

School achievement in domains other than

mathematics and literacy (e.g., Engineering and

Social Sciences)

Program Criterion Reference Test (Dalton, 1986)

Science Achievement Test (Park, 2015)

Engineering Achievement Test (Nugent et al., 2010)

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 81

Table 2

Summary of Study Design, Sample, and Publication Characteristics (m = 105, k = 539)

Characteristics m k Proportion of
studies b

Proportion of
effect sizes

Study design and sample characteristics

Statistical study design
(coded at the level of effect sizes)

Pretest-posttest control group design 77 363 - 67.3 %
Posttest-only design 34 176 - 32.7 %

Statistical study design
(coded at the level of studies)

Pretest-posttest control group design 72 335 68.6 % 62.2 %
Posttest-only design 27 117 25.7 % 21.7 %
Mixed design 6 87 5.7 % 16.1 %

Randomization

Random group assignment 47 304 44.8 % 56.4 %
Non-random group assignment 58 235 55.2 % 43.6 %

Treatment of control group(s)
(coded at the level of effect sizes)

Treated controls 41 163 - 30.2 %
Untreated controls 80 376 - 69.8 %

Treatment of control group(s)
(coded at the level of studies)

Treated controls 25 88 23.8 % 16.3 %
Untreated controls 64 268 61.0 % 49.7 %
Mixed groups 16 183 15.2 % 34.0 %

Matching #

Matched 29 158 27.6 % 29.3 %
Not matched 71 365 67.6 % 67.7 %

Student collaboration #

Collaboration 49 303 46.7 % 56.2 %
No collaboration 21 99 20.0 % 18.4 %

Programming tool #

Visual tool 85 467 81.0 % 86.6 %
Text-based tool 16 55 15.2 % 10.2 %

Programming context

Regular school instruction 89 446 84.8 % 82.7 %
Extra-curricular activities 16 93 15.2 % 17.3 %

Type of outcome measure

Standardized test 58 288 - 53.4 %
Unstandardized test 56 251 - 46.6 %

Tests developed by researchers 52 235 - 43.6 %
Tests developed by teachers 6 16 - 3.0 %

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 82

Cognitive skills measures

Programming 13 19 - 3.5 %
Reasoning 59 229 - 42.5 %
Creative thinking 10 77 - 14.3 %
Metacognition 10 48 - 8.9 %
Spatial skills 19 38 - 7.1 %
Mathematical skills 36 102 - 18.9 %
Literacy 9 19 - 3.5 %
School achievement 6 7 - 1.3 %

Type of transfer
Near transfer only 3 3 2.9 % 0.6 %
Far transfer only 92 490 87.6 % 90.9 %
Near and far transfer 10 46 9.5 % 8.5 %

Educational level a

Kindergarten 7 22 6.4 % 4.1 %
Primary school 68 390 61.8 % 72.4 %
Secondary school 23 112 20.9 % 20.8 %
College and university 12 15 10.9 % 2.8 %

Average age of students #

5-10 years 25 191 23.8 % 35.4 %
11-15 years 9 31 8.6 % 5.8 %
16-20 years 2 6 1.9 % 1.1 %
> 20 years 2 8 1.9 % 1.5 %

Location of the study sample

Asia 15 76 14.2 % 14.1 %
Europe 8 52 7.5 % 9.6 %
North America 80 403 75.5 % 74.8 %
South America 3 8 2.8 % 1.5 %

Publication characteristics

Publication status

Published 62 355 59.0 % 65.9 %
Grey literature 43 184 41.0 % 34.1 %

Publication year

1970-1979 1 2 1.0 % 0.4 %
1980-1989 51 297 48.6 % 55.1 %
1990-1999 26 144 24.8 % 26.7 %
2000-2009 7 17 6.7 % 3.2 %
2010-2017 20 79 19.0 % 14.7 %

Note. m = Number of studies, k = Number of effect sizes.
a The overall number of effect sizes may exceed k = 539, because some studies contained
samples from different educational levels.
b Some of these proportions are not provided here, because certain characteristics were
considered effect size rather than study characteristics.
Missing data in moderator variables occurred.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 83

Table 3

Categorical Moderator Analyses of the Overall Transfer Effects (m = 105, k = 539)

Moderator variables m k g 95 % CI QM (df) p QE (df) p !"" !#"
Study characteristics

Study design (coded at
the level of effect sizes)

Pretest-posttest control
group design

77 363 0.50 [0.37, 0.63] 0.07 (1) .79 2958.06 (537) < .001 0.0 % 0.0 %

Posttest-only design 34 176 0.47 [0.30, 0.65]
Study design (coded at
the level of study)

Pretest-posttest control
group design 72 335 0.46 [0.31, 0.60] 1.03 (2) .60 - b - b 0.0 % 0.0 %

Posttest-only design 27 117 0.53 [0.30, 0.77]
Mixed design 6 87 0.69 [0.23, 1.16]

Randomization
Random group
assignment

47 304 0.56 [0.38, 0.73] 1.04 (1) .31 2877.23 (537) < .001 0.0 % 1.1 %

Non-random group
assignment

58 235 0.44 [0.27, 0.60]

Treatment of control
group(s) (coded at the
level of effect sizes)

Treated controls 41 163 0.16 [0.01, 0.33] 40.12 (1) < .001 2897.38 (537) < .001 16.7 % 0.0 %
Untreated controls 80 376 0.65 [0.51, 0.78]

Treatment of control
group(s) (coded at the
level of studies)

Treated controls 25 88 0.58 [0.33, 0.83] 2.24 (2) .33 - b - b 0.0 % 0.0 %
Untreated controls 64 268 0.51 [0.36, 0.67]

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 84

Mixed controls 16 183 0.31 [0.03, 0.59]
Type of transfer

Near transfer only 3 3 1.44 [0.53, 2.35] 4.26 (2) .12 - b - b 0.0 % 0.6 %
Far transfer only 92 490 0.48 [0.35, 0.60]
Near and far transfer 10 46 0.47 [0.10, 0.84]

Matching#
Matched 29 158 0.43 [0.21, 0.65] 0.58 (1) .45 2922.38 (522) < .001 0.0 % 0.0 %
Not matched 71 365 0.53 [0.39, 0.68]

Student collaboration#
Collaboration 49 303 0.55 [0.37, 0.74] 0.34 (1) .56 2376.05 (400) < .001 0.0 % 0.0 %
No collaboration 21 99 0.45 [0.16, 0.74]

Programming tool#
Visual tool 85 467 0.52 [0.38, 0.65] 0.50 (1) .48 2966.95 (520) < .001 0.0 % 0.0 %
Text-based tool 16 55 0.40 [0.08, 0.71]

Study context
Regular lessons 89 446 0.47 [0.34, 0.60] 0.98 (1) .32 2931.26 (537) < .001 0.2 % 0.0 %
Extracurricular activity 16 93 0.63 [0.33, 0.93]

Type of outcome measure
Standardized test 58 288 0.42 [0.28, 0.57] 2.59 (1) .11 2964.88 (537) < .001 0.0 % 3.9 %
Unstandardized test 56 251 0.57 [0.42, 0.71]

Sample characteristics
Educational level a

Kindergarten 7 22 0.50 [0.01, 1.00] 2.21 (3) .55 2958.63 (535) < .001 0.0 % 0.0 %
Primary school 68 390 0.56 [0.20, 0.91]
Secondary school 23 112 0.36 [0.09, 0.62]
College and university 12 15 0.35 [0.04, 0.66]

Publication status
Published literature 62 355 0.60 [0.45, 0.75] 4.67 (1) .03 2877.82 (537) < .001 0.0 % 4.6 %
Grey literature 43 184 0.34 [0.15, 0.52]

Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying

the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 85

explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after

introducing moderators (Snijders & Bosker, 2012). For moderators, the number of studies may exceed m = 105, because some of the moderators

were coded at the effect size rather than the study level.
a The overall number of effect sizes may exceed k = 539, because some studies contained samples from multiple educational levels.
b The test for residual heterogeneity failed to converge for this study-level moderator.
Missing data in moderator variables occurred.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 86

Table 4

Selection of Models to Estimate Near and Far Transfer Effects

Model g 95 % CI z $"" [95 % CI] $#" [95 % CI] -2LL (df) AIC BIC Model
comparison

LRT

Near Transfer—Computer programming skills (m = 13, k = 19)

1 0.75 [0.39, 1.11] 4.1* 0.037
[0.000, 0.300]

0.337
[0.063, 1.119]

32.5 (3) 38.5 41.2 - -

2 0.75 [0.39, 1.11] 4.1* 0 0.367
[0.122, 1.151]

33.9 (2) 37.9 39.6 1 vs. 2 χ2(1) = 1.3, p = .25

3 0.66 [0.37, 0.95] 4.4* 0.318
[0.114, 0.847]

0 38.6 (2) 42.6 44.3 1 vs. 3 χ2(1) = 6.0*

4 0.77 [0.66, 0.88] 13.7* 0 0 76.3 (1) 78.3 79.2 1 vs. 4 χ2(2) = 47.7*

Far Transfer—Cognitive skills other than programming (m = 102, k = 520)

1 0.47 [0.35, 0.59] 7.8* 0.203
[0.162, 0.252]

0.273
[0.184, 0.404]

1087.2 (3) 1093.2 1105.9 - -

2 0.47 [0.36, 0.58] 8.1* 0 0.308
[0.225, 0.430]

1492.9 (2) 1496.9 1505.4 1 vs. 2 χ2(1) = 405.8*

3 0.45 [0.36, 0.49] 13.3* 0.417
[0.353, 0.494]

0 1224.6 (2) 1228.6 1237.1 1 vs. 3 χ2(1) = 137.4*

4 0.33 [0.31, 0.36] 28.9* 0 0 2606.6 (1) 2608.6 2612.9 1 vs. 4 χ2(2) = 1519.5*
Note. g = Effect size Hedges’ g, 95 % CI = 95 % Wald confidence intervals, $"" = Level-2 variance, $#" = Level-3 variance, -2LL (df) = -2

×Loglikelihood value with df degrees of freedom, AIC = Akaike’s Information Criterion, BIC = Bayesian Information Criterion,

LRT = Likelihood-Ratio Test, m = Number of studies, k = Number of effect sizes.

* p < .01

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 87

Table 5

Categorical Moderator Analyses of the Near Transfer Effects (m = 13, k = 19)

Moderator variables m k g 95 % CI QM (df) p QE (df) p !"" !#"
Study characteristics

Study design (coded at
the levels of effect sizes
and studies)

Pretest-posttest control
group design

8 11 0.70 [0.21, 1.19] 0.14 (1) .71 87.05 (17) < .001 0.0 % 0.0 %

Posttest-only design 5 8 0.84 [0.24, 1.45]
Randomization

Random group
assignment

4 8 0.29 [-0.27, 0.86] 3.51 (1) .06 56.63 (17) < .001 0.0 % 25.3 %

Non-random group
assignment

9 11 0.95 [0.56, 1.34]

Treatment of control
group(s) (coded at the
level of effect sizes)

Treated controls 1 1 0.23 [-1.09, 1.54] 0.68 (1) .41 81.99 (17) < .001 0.0 % 0.0 %
Untreated controls 12 18 0.80 [0.41, 1.19]

Treatment of control
group(s) (coded at the
level of studies)

Treated controls 1 1 0.23 [-1.16, 1.61] 1.02 (2) .60 79.57 (16) < .001 0.0 % 0.0 %
Untreated controls 10 12 0.86 [0.41, 1.31]
Mixed controls 2 6 0.52 [-0.43, 1.46]

Matching
Matched 2 5 0.22 [-0.70, 1.13] 1.53 (1) .22 72.25 (17) < .001 0.0 % 6.7 %
Not matched 11 14 0.84 [0.46, 1.22]

Student collaboration#

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 88

Collaboration 6 15 0.68 [0.24, 1.12] 0.18 (1) .67 51.55 (12) < .001 0.0 % 0.0 %
No collaboration 2 3 0.48 [-0.33, 1.29]

Programming tool#
Visual tool 10 14 0.82 [0.36, 1.27] 0.01 (1) .92 80.34 (16) < .001 0.0 % 0.0 %
Text-based tool 2 4 0.76 [-0.21, 1.73]

Study context
Regular lessons 9 12 0.69 [0.23, 1.15] 0.28 (1) .60 84.85 (17) < .001 0.0 % 0.0 %
Extracurricular activity 4 7 0.91 [0.22, 1.61]

Type of outcome measure
Standardized test 1 1 0.71 [-0.60, 2.03] 0.01 (1) .95 87.01 (17) < .001 0.0 % 0.0 %
Unstandardized test 12 18 0.76 [0.36, 1.16]

Facets of Programming
Programming skills 11 14 0.70 [0.29, 1.12] 0.44 (1) .51 82.46 (17) < .001 0.0 % 0.0 %
Programming
knowledge

2 5 1.08 [0.05, 2.11]

Sample characteristics
Educational level a

Kindergarten 1 1 0.41 [-1.10, 1.92] 0.43 (3) .93 74.06 (15) < .001 0.0 % 0.0 %
Primary school 6 11 0.90 [0.24, 1.57]
Secondary school 5 6 0.69 [-0.02, 1.39]
College and university 2 3 0.72 [-0.23, 1.67]

Publication status
Published literature 10 15 0.72 [0.28, 1.15] 0.13 (1) .72 86.27 (17) < .001 0.0 % 0.0 %
Grey literature 3 4 0.88 [0.10, 1.66]

Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying
the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance
explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after
introducing moderators (Snijders & Bosker, 2012).
a The overall number of effect sizes may exceed k = 19, because some studies contained samples from multiple educational levels.
Missing data in moderator variables occurred.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 89

Table 6

Categorical Moderator Analyses of the Far Transfer Effects (m = 102, k = 520)

Moderator variables m k g 95 % CI QM (df) p QE (df) p !"" !#"
Study characteristics

Study design (coded at
the level of effect sizes)

Pretest-posttest control
group design

76 352 0.48 [0.35, 0.62] 0.13 (1) .72 2820.4 (518) < .001 0.0 % 0.0 %

Posttest-only design 32 168 0.45 [0.27, 0.63]
Study design (coded at
the level of study)

Pretest-posttest control
group design

71 324 0.44 [0.30, 0.59] 1.06 (2) .59 - b - b 0.0 % 0.0 %

Posttest-only design 25 109 0.50 [0.26, 0.74]
Mixed design 6 87 0.69 [0.23, 1.16]

Randomization
Random group
assignment

46 296 0.57 [0.40, 0.75] 2.29 (1) .13 2698.60 (518) < .001 0.0 % 3.0 %

Non-random group
assignment

56 224 0.39 [0.23, 0.55]

Treatment of control
group(s) (coded at the
level of effect sizes)

Treated controls 41 162 0.15 [-0.02, 0.31] 39.33 (1) < .001 2767.84 (518) < .001 17.2 % 0.0 %
Untreated controls 76 358 0.64 [0.50, 0.77]

Treatment of control
group(s) (coded at the
level of studies)

Treated controls 25 87 0.59 [0.34, 0.84] 1.95 (2) .38 - b - b 0.0 % 0.0 %
Untreated controls 61 256 0.48 [0.32, 0.63]

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 90

Mixed controls 16 177 0.32 [0.04, 0.60]
Matching#

Matched 29 153 0.45 [0.22, 0.67] 0.17 (1) .68 2770.22 (502) < .001 0.0 % 0.0 %
Not matched 68 351 0.50 [0.35, 0.65]

Student collaboration#
Collaboration 48 292 0.56 [0.36, 0.75] 0.34 (1) .56 2281.99 (386) < .001 0.0 % 0.0 %
No collaboration 21 96 0.45 [0.15, 0.75]

Programming tool#
Visual tool 82 453 0.50 [0.36, 0.63] 0.47 (1) .50 2821.09 (502) < .001 0.0 % 0.0 %
Text-based tool 16 51 0.38 [0.07, 0.69]

Study context
Regular lessons 87 434 0.45 [0.32, 0.58] 0.53 (1) .47 2798.06 (518) < .001 0.0 % 0.0 %
Extracurricular activity 15 86 0.58 [0.27, 0.88]

Type of outcome measure
Standardized test 58 287 0.41 [0.26, 0.55] 2.60 (1) .11 2831.09 (518) < .001 0.0 % 3.2 %
Unstandardized test 51 233 0.55 [0.40, 0.70]

Sample characteristics
Educational level a

Kindergarten 6 21 0.51 [-0.02, 1.04] 2.45 (3) .49 2800.63 (516) < .001 0.0 % 0.0 %
Primary school 67 379 0.53 [0.38, 0.68]
Secondary school 23 106 0.33 [0.06, 0.59]
College and university 11 42 0.31 [-0.01, 0.62]

Publication status
Published literature 59 340 0.58 [0.42, 0.73] 4.38 (1) .04 2738.92 (518) < .001 0.0 % 4.9 %
Grey literature 43 180 0.32 [0.02, 0.49]

Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying
the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance
explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after
introducing moderators (Snijders & Bosker, 2012). a The overall number of effect sizes may exceed k = 520, because some studies contained
samples from multiple educational levels. b The test for residual heterogeneity failed to converge for this study-level moderator. # Missing data in
moderator variables occurred.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 91

Table 7

Continuous Moderator Analyses of the Near and Far Transfer Effects

Moderator variables Intercept SE B SE QM (df) p QE (df) p !"" !#"
Near Transfer—Computer programming skills (m = 13, k = 19)

Study characteristics
Intervention length (in hours) # 0.81 0.25 -0.05 0.23 0.04 (1) .84 66.55 (13) < .001 – 0.0 %
Publication year 0.74 0.20 0.06 0.19 0.10 (1) .76 84.13 (17) < .001 – 0.0 %

Sample characteristics
Average age (in years) # 1.00 0.39 -0.29 0.39 0.55 (1) .46 38.94 (5) < .001 – 0.0 %
Proportion of female students # 0.91 0.32 -0.24 0.35 0.46 (1) .50 34.52 (6) < .001 – 0.0 %

Far Transfer—Cognitive skills other than programming (m = 102, k = 520)
Study characteristics

Intervention length (in hours) # 0.48 0.07 0.01 0.06 0.02 (1) .88 2237.58 (479) < .001 0.0 % 0.1 %
Publication year 0.46 0.06 0.07 0.06 1.55 (1) .21 2823.00 (518) < .001 0.3 % 0.0 %

Sample characteristics
Average age (in years) # 0.53 0.09 -0.06 0.07 0.72 (1) .40 920.74 (227) < .001 0.0 % 0.0 %
Proportion of female students# 0.40 0.08 -0.04 0.07 0.33 (1) .57 1727.84 (325) < .001 0.2 % 0.4 %

Note. QM = Q-statistic underlying the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom,

!"" = Level-2 variance explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or

level-3 variance after introducing moderators. All moderators were z-standardized.
Missing data in moderator variables occurred.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 92

Table 8

Models to Estimate Far Transfer Effects Differentiated by Cognitive Skills

Cognitive Skills m k g 95 % CI z $"" [95 % CI] $#" [95 % CI] -2LL (df) AIC BIC
Reasoning 59 229 0.37 [0.23, 0.52] 5.1** 0.067

[0.035, 0.110]
0.246

[0.157, 0.393]
399.8 (3) 405.8 416.1

Creative thinking 10 77 0.73 [0.27, 1.20] 3.1** 0.257
[0.159, 0.417]

0.505
[0.159, 1.733]

160.4 (3) 166.4 173.4

Metacognition 10 48 0.44 [0.01, 0.88] 2.0* 0 0.433
[0.156, 1.467]

87.1 (2) 91.1 94.8

Spatial skills 19 38 0.37 [0.08, 0.67] 2.5* 0.152
[0.033, 0.444]

0.265
[0.001, 0.888]

77.4 (3) 83.4 88.2

Mathematical skills 36 102 0.57 [0.34, 0.80] 4.8** 0.263
[0.163, 0.420]

0.321
[0.147, 0.650]

228.7 (3) 234.7 242.5

Literacy 9 19 -0.02 [-0.12, 0.08] -0.4 0 0 21.3 (1) 23.3 24.2
School achievement 6 7 0.28 [0.14, 0.42] 3.9** 0 0 6.3 (1) 8.3 9.3

Note. g = Effect size Hedges’ g, 95 % CI = 95 % Wald confidence intervals, $"" = Level-2 variance, $#" = Level-3 variance, -2LL (df) = -2

×Loglikelihood value with df degrees of freedom, AIC = Akaike’s Information Criterion, BIC = Bayesian Information Criterion, m = Number of

studies, k = Number of effect sizes.

* p < .05, ** p < .01

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 93

Table 9

Subskill Moderator Analyses of the Transfer Effects by Cognitive Skills

Moderator variables m k g 95 % CI QM (df) p QE (df) p !"" !#"
Reasoning skills

Subskills a
Intelligence, attention,
perception, and
memory

29 97 0.25 [0.08, 0.43] 4.29 (2) .12 756.02 (226) < .001 0.0 % 8.5 %

Problem solving 30 112 0.47 [0.30, 0.65]
Critical thinking 9 20 0.37 [0.07, 0.67]

Skills assessment #
Verbal 15 22 0.24 [0.06, 0.42] 0.08 (1) .78 185.43 (91) < .001 0.0 % 0.0 %
Non-verbal 24 71 0.21 [0.06, 0.36]

Creative thinking skills
Subskills a

Flexibility 8 20 0.39 [-0.10, 0.88] 48.09 (3) < .001 414.31 (73) < .001 52.0 % 2.7 %
Fluency 10 24 0.44 [-0.04, 0.92]
Originality 10 25 1.28 [0.80, 1.76]
Elaboration 9 18 0.56 [0.06, 1.06]

Skills assessment #
Verbal 3 13 0.71 [0.25, 1.19] 0.01 (1) .96 679.28 (67) < .001 2.8 % 0.6 %
Non-verbal 10 56 0.72 [0.25, 1.19]

Spatial skill
Subskills a

Spatial understanding
and reasoning

 18 34 0.28 [0.03, 0.52] 4.74 (1) .03 116.25 (36) < .001 0.0 % 66.3 %

Spatial memory 1 4 1.25 [0.41, 2.10]

Mathematical skills

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 94

Subskills a
Mathematics
achievement,
modeling, and problem
solving

20 38 0.45 [0.14, 0.76] 1.22 (1) .27 800.91 (100) < .001 0.1 % 0.5 %

Mathematical concepts 20 64 0.66 [0.38, 0.95]
Note. m = Number of studies, k = Number of effect sizes, g = Hedges’ g, 95 % CI = 95 % Wald confidence interval, QM = Q-statistic underlying

the test of moderators, QE = Q-statistic underlying the test for residual heterogeneity, df = degrees of freedom, !"" = Level-2 variance

explanation, !#" = Level-3 variance explanation. Values of variance explanations are based on the reduction of level-2 or level-3 variance after

introducing moderators (Snijders & Bosker, 2012).

a The overall number of effect sizes may exceed the overall number of effect sizes (k), because some studies administered tests targeted at

multiple subskills.

Missing data in moderator variables occurred.

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 95

Table 10

Summary of Key Findings

Research Questions (RQs) Key Findings

RQ1a. Overall transfer effect size g = 0.49, 95 % CI = [0.37, 0.61]

RQ1b. Moderators Treatment of control group(s), publication status

RQ2a. Near transfer effect size g = 0.75, 95 % CI = [0.39, 1.11]

RQ2b. Moderators Randomization of experimental groups

RQ3a. Overall far transfer effect

size

g = 0.47, 95 % CI = [0.35, 0.59]

RQ3b. Moderators Treatment of control group(s), publication status

RQ4a. Far transfer effects by

cognitive skills

• Reasoning: g = 0.37, 95 % CI = [0.23, 0.52]

• Creative thinking: g = 0.73, 95 % CI = [0.27, 1.20]

• Metacognition: g = 0.44, 95 % CI = [0.01, 0.88]

• Spatial skills: g = 0.37, 95 % CI = [0.08, 0.67]

• Mathematical skills: g = 0.57, 95 % CI = [0.34, 0.80]

• Literacy: g = -0.02, 95 % CI = [-0.12, 0.08]

• School achievement: g = 0.28, 95 % CI = [0.14, 0.42]

RQ4b. Differences in effect sizes

by cognitive skill

Significant differences existed—8.0 % variance

explanation by differences between cognitive skills

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 96

Figures

Figure 1. Flow diagram describing the literature search and the selection of eligible transfer

effect studies (adapted from the PRISMA Statement; Moher, Liberati, Tetzlaff, Altman, &

The PRISMA Group, 2009).

TRANSFER EFFECTS OF COMPUTER PROGRAMMING 97

(a)

(b)

Figure 2. (a) Funnel plot and (b) p-curve of the full data set (m = 105, k = 539).

